Answer:
For F=GMm/r^2
![F = (GMm)/(r^(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/ld19xjrygh0prt5c2otgt1235b8iuiyuni.png)
a.
![M = (Fr^(2) )/(Gm)](https://img.qammunity.org/2021/formulas/mathematics/college/43qlxyqt3pltvx1evjng8cjuguag9lrhbf.png)
b.
![r = \sqrt{(GMm)/(F)}](https://img.qammunity.org/2021/formulas/mathematics/college/lzqo9twd9qbdvw0xw46pt1vhtuis8sqtgo.png)
M=kxa^3/p^2
![M = (kxa^(3) )/(p^(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/lcuniajff26trrvboe468xbyx2yx1qq0ky.png)
a.
![p = \sqrt{(kxa^(3) )/(M)}](https://img.qammunity.org/2021/formulas/mathematics/college/p75d9u3evztd3q4ztn462ex1vlaql2l8r3.png)
b.
![a = \sqrt[3]{(Mp^(2) )/(kx)}](https://img.qammunity.org/2021/formulas/mathematics/college/mye8jrun3vervoontfl81a00dl917fvi8q.png)
Explanation:
To solve for the unknown quantity, we will make the unknown quantity the subject of the given equation.
For F=GMm/r^2
a. M =
F=GMm/r^2
![F = (GMm)/(r^(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/ld19xjrygh0prt5c2otgt1235b8iuiyuni.png)
The first thing to do is cross multiply, so that the equation gives
![Fr^(2) = GMm](https://img.qammunity.org/2021/formulas/mathematics/college/atm534cifr38gxjotl8vgg3riocotd105f.png)
Now, divide both sides of the equation by
, we then get
![(Fr^(2) )/(Gm) = (GMm)/(Gm)](https://img.qammunity.org/2021/formulas/mathematics/college/kqg57xxgqjhmt4vy1679k35nmb5liszh98.png)
Then,
![(Fr^(2) )/(Gm) = M](https://img.qammunity.org/2021/formulas/mathematics/college/vo7wzhmqpi52xbyib58hssh8fjbv32xgjw.png)
Hence,
![M = (Fr^(2) )/(Gm)](https://img.qammunity.org/2021/formulas/mathematics/college/43qlxyqt3pltvx1evjng8cjuguag9lrhbf.png)
b. r =
F=GMm/r^2
![F = (GMm)/(r^(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/ld19xjrygh0prt5c2otgt1235b8iuiyuni.png)
Likewise, we will first cross multiply, we then get
![Fr^(2) = GMm](https://img.qammunity.org/2021/formulas/mathematics/college/atm534cifr38gxjotl8vgg3riocotd105f.png)
Now, divide both sides by
, so that the equation becomes
![(Fr^(2) )/(F) = (GMm)/(F) \\](https://img.qammunity.org/2021/formulas/mathematics/college/v7mgy6zhr1qv4secz6t67lypfxs0qe78ri.png)
∴
![r^(2) = (GMm)/(F) \\](https://img.qammunity.org/2021/formulas/mathematics/college/l1rs1gwfjxzlvtookdsk1gd4z3ndoqq1uv.png)
Then,
![r = \sqrt{(GMm)/(F)}](https://img.qammunity.org/2021/formulas/mathematics/college/lzqo9twd9qbdvw0xw46pt1vhtuis8sqtgo.png)
For M=kxa^3/p^2
a. P =
M=kxa^3/p^2
![M = (kxa^(3) )/(p^(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/lcuniajff26trrvboe468xbyx2yx1qq0ky.png)
The first thing to do is cross multiply, so that the equation becomes
![Mp^(2) = kxa^(3) \\](https://img.qammunity.org/2021/formulas/mathematics/college/b65ck44xey7o46k3km50jepf37s8jsfjrg.png)
Now, divide both sides by M, we then get
![(Mp^(2) )/(M) = (kxa^(3) )/(M)](https://img.qammunity.org/2021/formulas/mathematics/college/eroeppq3izyxrxouuymdm6feh334lql3kv.png)
∴
![p^(2) = (kxa^(3) )/(M)](https://img.qammunity.org/2021/formulas/mathematics/college/h7vm50sz4535428lvw7ujwuxr3y545lhpm.png)
Then,
![p = \sqrt{(kxa^(3) )/(M)}](https://img.qammunity.org/2021/formulas/mathematics/college/p75d9u3evztd3q4ztn462ex1vlaql2l8r3.png)
b. a =
M=kxa^3/p^2
![M = (kxa^(3) )/(p^(2) )](https://img.qammunity.org/2021/formulas/mathematics/college/lcuniajff26trrvboe468xbyx2yx1qq0ky.png)
Also, we will first cross multiply to get
![Mp^(2) = kxa^(3) \\](https://img.qammunity.org/2021/formulas/mathematics/college/b65ck44xey7o46k3km50jepf37s8jsfjrg.png)
Then, divide both sides of the equation by
to get
![(Mp^(2) )/(kx)= (kxa^(3) )/(kx)\\](https://img.qammunity.org/2021/formulas/mathematics/college/sk5h43ka5laah1crauf26dtondrw7n7a12.png)
![(Mp^(2) )/(kx)= a^(3)](https://img.qammunity.org/2021/formulas/mathematics/college/lh157r7wl69npzq42s9meqvudp08dze7l8.png)
∴
![a^(3) = (Mp^(2) )/(kx)](https://img.qammunity.org/2021/formulas/mathematics/college/4ywpfapwds91ozi253idbt2ghdqdcxfcc3.png)
Then,
![a = \sqrt[3]{(Mp^(2) )/(kx)}](https://img.qammunity.org/2021/formulas/mathematics/college/mye8jrun3vervoontfl81a00dl917fvi8q.png)