Answer:
![f(x,y) = \log_(4) (x-5-√(25-6\cdot y))+\log_(4) (x-5+√(25-6\cdot y))](https://img.qammunity.org/2021/formulas/mathematics/college/yyz6712axqg73raj6fevpcx5qmgiy5p9e3.png)
Explanation:
Let be
, this expression is simplified by algebraic and trascendental means. As first step, the second order polynomial is simplified. Its roots are determined by the Quadratic Formula, that is to say:
![r_(1,2) = \frac{20\pm \sqrt{(-20)^(2)-4\cdot (2)\cdot (12\cdot y)}}{2\cdot (2)}](https://img.qammunity.org/2021/formulas/mathematics/college/zyk4ah0bjgtow25k8cvkzgjzdues6j3ve2.png)
![r_(1,2) = 5\pm √(25-6\cdot y)](https://img.qammunity.org/2021/formulas/mathematics/college/dc44qqek6me8agp5zo7rcyccqtqv6c2mvz.png)
The polynomial in factorized form is:
![(x-5-√(25-6\cdot y))\cdot (x-5+√(25-6\cdot y))](https://img.qammunity.org/2021/formulas/mathematics/college/olfsbvwgblrvam3baq7g4u0flwx9j5buzx.png)
The function can be rewritten and simplified as follows:
![f(x,y) = \log_(4) [(x-5-√(25-6\cdot y))\cdot (x-5+√(25-6\cdot y))]](https://img.qammunity.org/2021/formulas/mathematics/college/tp5rryfgow0zl6bs5cw3lyd6w2gtvulj5k.png)
![f(x,y) = \log_(4) (x-5-√(25-6\cdot y))+\log_(4) (x-5+√(25-6\cdot y))](https://img.qammunity.org/2021/formulas/mathematics/college/yyz6712axqg73raj6fevpcx5qmgiy5p9e3.png)