Answer:
![q(x)=2x-5,x\\eq-2](https://img.qammunity.org/2021/formulas/mathematics/college/73fi8fgmlprvzto8goo40ikq2y31sy1gf4.png)
Explanation:
So we have:
![a(x)=2x^2-x-10\\b(x)=x+2](https://img.qammunity.org/2021/formulas/mathematics/college/a365ynlhbvqadfu4xt1bznb1lr3pxz70dx.png)
And we want to find the quotient q(x). Thus:
![q(x)=(a(x))/(b(x))](https://img.qammunity.org/2021/formulas/mathematics/college/jz6wsecnvqmudi2ap0deyykaurdljgs2c2.png)
Substitute:
![q(x)=(2x^2-x-10)/(x+2)](https://img.qammunity.org/2021/formulas/mathematics/college/42ryz41q9klvhb2bldr293adlsz5vfkpwn.png)
Factor the numerator:
![2x^2-x-10\\=2x^2+4x-5x-10\\=2x(x+2)-5(x+2)\\=(2x-5)(x+2)](https://img.qammunity.org/2021/formulas/mathematics/college/xo2pdrdzcozntucpbng37p9d8f68bthzmd.png)
Substitute:
![q(x)=((2x-5)(x+2))/(x+2)](https://img.qammunity.org/2021/formulas/mathematics/college/1hr7prq7e5ymdb3dxrtsgeb5ddpls3wu7x.png)
The (x+2)s cancel out. Therefore:
![q(x)=2x-5](https://img.qammunity.org/2021/formulas/mathematics/college/j9cub8sjctbv0vx86mt5qmg12moqp5f2o2.png)
However, we must restrict x such that it cannot equal -2.
In the original equation, if it did, our answer would be undefined. Thus, our final answer is:
![q(x)=2x-5,x\\eq-2](https://img.qammunity.org/2021/formulas/mathematics/college/73fi8fgmlprvzto8goo40ikq2y31sy1gf4.png)
And we are done :)
Edit: Typo