Answer:
10626 ways
Explanation:
Given
Number of students = 23
Prizes = 3
Required
Number of different outcomes for the top 3
This question will be solved using permutation formula because it implies selection of 3 students from 23
![^nP_r = (n!)/((n-r)!)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ym7k206ka8vdymus4t924216dtb40vij8q.png)
Where n = 23 and r = 3
The formula becomes
![^(23)P_3 = (23!)/((23-3)!)](https://img.qammunity.org/2021/formulas/mathematics/college/os1gsljfumauree7xgacykfcq1fnzz2538.png)
![^(23)P_3 = (23!)/((20)!)](https://img.qammunity.org/2021/formulas/mathematics/college/ornpaxo79xwgdbjm7gwrsbk2tkmhafg9ug.png)
![^(23)P_3 = (23!)/(20!)](https://img.qammunity.org/2021/formulas/mathematics/college/p2yzzmf8m4nfjzxy1tlnwpn3juljkr593m.png)
![^(23)P_3 = (23 * 22 * 21 * 20!)/(20!)](https://img.qammunity.org/2021/formulas/mathematics/college/8a75kxvgo7arrkfwhzi024j54tyxx0fa8u.png)
![^(23)P_3 = 23 * 22 * 21](https://img.qammunity.org/2021/formulas/mathematics/college/xhpao2v22eogy4k4jlbndrydzy073rgu08.png)
![^(23)P_3 = 10626](https://img.qammunity.org/2021/formulas/mathematics/college/xk7ql0tfbauae5e92qyma2v8x9uozshcq1.png)
Hence, there are 10626 ways