162k views
5 votes
Point K is on line segment JL. Given KL = 2x – 2, JL = 4x + 9, and

JK = 5x + 2, determine the numerical length of JL. i

Point K is on line segment JL. Given KL = 2x – 2, JL = 4x + 9, and JK = 5x + 2, determine-example-1

1 Answer

4 votes

Answer:

JL = 21

Explanation:

Given that K is on line segment JL, therefore:

KL + JK = JL (according to segment addition postulate)

KL = 2x - 2

JK = 5x + 2

JL = 4x + 9

Thus:


(2x - 2) + (5x + 2) = (4x + 9)

Solve for x


2x - 2 + 5x + 2 = 4x + 9


2x +5x - 2 + 2 = 4x + 9


7x = 4x + 9

Subtract 4x from both sides


7x - 4x = 4x + 9 - 4x


3x = 9

Divide both sides by 3


(3x)/(3) = (9)/(3)


x = 3

Find the numerical length of JL


JL = 4x + 9

Plug in the value of x


JL = 4(3) + 9 = 12 + 9 = 21

User Ejaz
by
4.6k points