Answer:
JL = 21
Explanation:
Given that K is on line segment JL, therefore:
KL + JK = JL (according to segment addition postulate)
KL = 2x - 2
JK = 5x + 2
JL = 4x + 9
Thus:
![(2x - 2) + (5x + 2) = (4x + 9)](https://img.qammunity.org/2021/formulas/mathematics/college/wcd0ggr7ty62iiwkuz5ao1rp6lvjwa44hq.png)
Solve for x
![2x - 2 + 5x + 2 = 4x + 9](https://img.qammunity.org/2021/formulas/mathematics/college/kf8aei985ue3nmc81g41nrrjz5zgmj06kh.png)
![2x +5x - 2 + 2 = 4x + 9](https://img.qammunity.org/2021/formulas/mathematics/college/lx8pijhh7wh5akk3w6sjasvvntap5fg2oo.png)
![7x = 4x + 9](https://img.qammunity.org/2021/formulas/mathematics/college/ceixr12auizy8hwo6au59ckczj04eqh63z.png)
Subtract 4x from both sides
![7x - 4x = 4x + 9 - 4x](https://img.qammunity.org/2021/formulas/mathematics/college/yg71rhmk5yi5x7ozbfdo3z3509y85gijib.png)
![3x = 9](https://img.qammunity.org/2021/formulas/mathematics/middle-school/tb3c8283k6fra2cfni2an4nacwjxyct6ck.png)
Divide both sides by 3
![(3x)/(3) = (9)/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/g4znnu1m9mcizzrynd3h8g4up8bsmgewoa.png)
![x = 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/k9g036hm5izcxawfiueilvprjv2215oq3t.png)
Find the numerical length of JL
![JL = 4x + 9](https://img.qammunity.org/2021/formulas/mathematics/college/t3t9zv5eczaz8f9169wlqhvhia0efdznzk.png)
Plug in the value of x
![JL = 4(3) + 9 = 12 + 9 = 21](https://img.qammunity.org/2021/formulas/mathematics/college/pel4nuxf4se3fp4v7cfbkysy29payb9e8h.png)