Answer:
y/y₀ = 1/2 + v₀²/(2 g y₀)
Step-by-step explanation:
This in a kinematics exercise in a mention
ball A.
Since the ball is dropped, its velocity starts at zero, at the meeting point the equation is
= - 2 g (y₀-y)
ball B
v_{B}^2 = v₀² - 2 g y
we substitute
2v_{B}^2 = -2 g (y₀ -y)
v_{B}^2 = - g y₀ + 2g y
v_{B}^2 = v₀² - 2gy
we have a system of two equations with two unknowns, therefore it can be solved. Let's multiply-by -1 and add
0 = g y₀ + v₀² -2gy
we clear the height
y = (g yo + v₀²) / 2g
y = yo / 2 + v₀² / 2g
In this exercise we assume that the height of the building is known and the initial velocity of ball B
The fraction is
y/yo = 1/2 + v₀²/(2gyo)