164k views
0 votes
Please someone help me to prove this...


Please someone help me to prove this... ​-example-1
User StandDuPp
by
8.3k points

2 Answers

4 votes

In this case we have the equation cos(20°)(cos(40°)(cos(60°)(cos(80°) = 1 / 16, and are asked to prove that this equation is true. Let's start by using the property 'cos(s)cos(t) = cos(s + t) + cos(s - t) / 2.' Taking the bit 'cos(20°)(cos(40°)' we know that s should = 20°, and t should = 40°.


\mathrm{Using\:the\:following\:identity}:\quad \cos \left(s\right)\cos \left(t\right)=(\cos \left(s+t\right)+\cos \left(s-t\right))/(2),


\cos \left(20^(\circ \:)\right)\cos \left(40^(\circ \:)\right)=(\cos \left(20^(\circ \:)+40^(\circ \:)\right)+\cos \left(20^(\circ \:)-40^(\circ \:)\right))/(2)\\


\mathrm{Substituting\:the\:value\:back}:(\cos \left(20^(\circ \:)+40^(\circ \:)\right)+\cos \left(20^(\circ \:)-40^(\circ \:)\right))/(2)\cos \left(60^(\circ \:)\right)\cos \left(80^(\circ \:)\right)


\mathrm{Multiply\:fractions}:\quad (\cos \left(60^(\circ \:)\right)\cos \left(80^(\circ \:)\right)\left(\cos \left(60^(\circ \:)\right)+\cos \left(-20^(\circ \:)\right)\right))/(2)

This expression is indeed not simplified, but remember that we can use the identities 'cos(- 20°) = cos(20°)' and 'cos(60°) = 1 / 2.' Let's substitute one step and a time.


\cos \left(-20^(\circ \:)\right)=\cos \left(20^(\circ \:)\right): (\cos \left(60^(\circ \:)\right)\cos \left(80^(\circ \:)\right)\left(\cos \left(60^(\circ \:)\right)+\cos \left(20^(\circ \:)\right)\right))/(2)


\cos \left(60^(\circ \:)\right)=(1)/(2):((1)/(2)\cos \left(80^(\circ \:)\right)\left((1)/(2)+\cos \left(20^(\circ \:)\right)\right))/(2)


((1)/(2)\cos \left(80^(\circ \:)\right)\left((1)/(2)+\cos \left(20^(\circ \:)\right)\right))/(2) = (\cos \left(80^(\circ \:)\right)\left(1+2\cos \left(20^(\circ \:)\right)\right))/(8)

Now that we have this 'simplified expression,' if we take the numerator as a whole in decimal form, it will = 0.5. Respectively 0.5 / 8 = 1 / 2 / 8 = 1 / 16. Hence our equation is true.


\cos \left(80^(\circ \:\:)\right)\left(1+2\cos \left(20^(\circ \:\:)\right)\right) = 0.5,\\0.5 / 8 = (1 / 2) / 8 = 1 / 16

User Kbulgrien
by
7.7k points
4 votes

Explanation:

cos 20° cos 40° cos 60° cos 80°

Simplify cos 60° to ½.

½ cos 20° cos 40° cos 80°

We can use double angle formula, sin(2θ) = 2 sin θ cos θ. Multiply and divide by 2 sin 20°.

½ (2 sin 20° cos 20° cos 40° cos 80°) / (2 sin 20°)

½ (sin 40° cos 40° cos 80°) / (2 sin 20°)

Multiply and divide by 2 and use double angle formula again.

½ (2 sin 40° cos 40° cos 80°) / (4 sin 20°)

½ (sin 80° cos 80°) / (4 sin 20°)

Multiply and divide by 2 and use double angle formula again.

½ (2 sin 80° cos 80°) / (8 sin 20°)

½ (sin 160°) / (8 sin 20°)

Use phase shift identity sin θ = sin(180−θ).

½ (sin 20°) / (8 sin 20°)

1/16

User Tushar Narang
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories