Answer:
![-2/5 \text{ and } 6](https://img.qammunity.org/2021/formulas/mathematics/high-school/jc35i4rwnwkhkez0b8k2wbka2sw7ks8j1c.png)
Explanation:
So we have the equation:
![|3k-2|=2|k+2|](https://img.qammunity.org/2021/formulas/mathematics/high-school/i3xiyf17mhuf1ezu8ae7v62bjpea8m40sf.png)
First, distribute the 2 into the absolute value:
![|3k-2|=|2k+4|](https://img.qammunity.org/2021/formulas/mathematics/high-school/185q4tkom482ohrwbjw5kh693yktgbf3gw.png)
Definition of absolute value:
![3k-2=(2k+4) \text{ or } 3k-2=-(2k+4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/57att5m30ih0bhee1t0xhfag8e24o1pcb6.png)
Left:
![3k-2=2k+4](https://img.qammunity.org/2021/formulas/mathematics/high-school/s2zl6lqlonr1isyte8goc5x82gejfebzm4.png)
Subtract 2k from both sides:
![k-2=4](https://img.qammunity.org/2021/formulas/mathematics/high-school/skzh5jwggjiwuo4m443rceyo52810wgj49.png)
Add 2 to both sides:
![k=6](https://img.qammunity.org/2021/formulas/mathematics/middle-school/7qw1g08j5h0gpemdhg2gho48acnc2wawdx.png)
Right:
![3k-2=-(2k+4)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xazbpzn0zvcc069cj5n7uwi57wuobx10st.png)
Distribute the negative:
![3k-2=-2k-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/dmc5l8h3wgkitx3eqk36bv0boiouadcpsv.png)
Add 2k to both sides:
![5k-2=-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/gp19du1c4dfowg9zr8tqhf4yd8kmjg5kot.png)
Add 2:
![5k=-2](https://img.qammunity.org/2021/formulas/mathematics/high-school/swqhmgncdf7tyamkp1wamp1rqb73kgbryu.png)
Divide by 5:
![k=-2/5](https://img.qammunity.org/2021/formulas/mathematics/high-school/29f43qlfvezp2wn7xwl79w6bywjo03fq9c.png)
So, our solutions are:
![-2/5 \text{ and } 6](https://img.qammunity.org/2021/formulas/mathematics/high-school/jc35i4rwnwkhkez0b8k2wbka2sw7ks8j1c.png)