164k views
4 votes
Evaluate the integral. W (x2 y2) dx dy dz; W is the pyramid with top vertex at (0, 0, 1) and base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0)

User JuanGG
by
4.5k points

1 Answer

3 votes

Answer:


\mathbf{\iiint_W (x^2+y^2) \ dx \ dy \ dz = (2)/(15)}

Explanation:

Given that:


\iiint_W (x^2+y^2) \ dx \ dy \ dz

where;

the top vertex = (0,0,1) and the base vertices at (0, 0, 0), (1, 0, 0), (0, 1, 0), and (1, 1, 0)

As such , the region of the bounds of the pyramid is: (0 ≤ x ≤ 1-z, 0 ≤ y ≤ 1-z, 0 ≤ z ≤ 1)


\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \int ^(1-z)_0 \int ^(1-z)_0 (x^2+y^2) \ dx \ dy \ dz


\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \int ^(1-z)_0 ( ((1-z)^3)/(3)+ (1-z)y^2) dy \ dz


\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \ dz \ ( ((1-z)^3)/(3) \ y + \frac {(1-z)y^3)}{3}] ^(1-x)_(0)


\iiint_W (x^2+y^2) \ dx \ dy \ dz = \int ^1_0 \ dz \ ( ((1-z)^4)/(3)+ ((1-z)^4)/(3)) \ dz


\iiint_W (x^2+y^2) \ dx \ dy \ dz =(2)/(3) \int^1_0 (1-z)^4 \ dz


\iiint_W (x^2+y^2) \ dx \ dy \ dz =- (2)/(15)(1-z)^5|^1_0


\mathbf{\iiint_W (x^2+y^2) \ dx \ dy \ dz = (2)/(15)}

User Radu Grama
by
4.1k points