118k views
2 votes
If t is directly proportional to s under cube and t = 4 when s = 64. Find

1. the value of t when s = 125
2. the value of s when I = 2.​

User Ekse
by
9.1k points

1 Answer

3 votes

Answer:

  1. t = 5
  2. s = 8

Explanation:


t \:\alpha\: \sqrt[3]{s} \\t = k\sqrt[3]{s} \:..........(1)\\\\t = 4, s = 64\\\\Substitute \:the \:values\:into \: equation\: 1\\4 = k\sqrt[3]{64} \\4 = 4k\\Divide \:both\:sides\:of\:the\:equation\:by\:4\\(4)/(4)= (4k)/(4) \\k = 1\\Substitute k \:for\:1 \:in\:equation\:1\\t = 1\sqrt[3]{s} \\t = \sqrt[3]{s} \:= Formula\:connecting\:t\:and\:s

1.


t = ? , s=125\\\\t = \sqrt[3]{s} \\\\t = \sqrt[3]{125} \\\\t = 5

2.


s = ? , t= 2\\\\t = \sqrt[3]{s} \\\\2 = \sqrt[3]{s} \\Cube\:both\:sides\:of\:the\:equation\\2^3 = \sqrt[3]{s} ^3\\\\8 =s\\s =8

User Peru
by
8.4k points