94.1k views
5 votes
Find the perimeter of rhombus star

Find the perimeter of rhombus star-example-1

1 Answer

4 votes

Answer:


4√(10)

Explanation:

Perimeter of the rhombus, STAR, is the sum of the length of all it's 4 sides.

The coordinates of its vertices are given as,

S(-1, 2)

T(2, 3)

A(3, 0)

R(0, -1)

Length of each side can be calculated using the distance formula given as
d = √(x_2 - x_1)^2 + (y_2 - y_1)^2)

Find the length of each side ST, TA, AR, RS, using the above formula by plugging in the coordinate values (x, y) of each vertices.


ST = √((x_2 - x_1)^2 + (y_2 - y_1)^2)

S(-1, 2) => (x1, y1)

T(2, 3) => (x2, y2)


ST = √((2 -(-1))^2 + (3 - 2)^2)


ST = √((3)^2 + (1)^2) = √(9 + 1) = √(10)


TA = √((x_2 - x_1)^2 + (y_2 - y_1)^2)

T(2, 3) => (x1, y1)

A(3, 0) => (x2, y2)


TA = √((3 - 2)^2 + (0 - 3)^2)


TA = √((1)^2 + (-3)^2) = √(1 + 9) = √(10)


AR = √((x_2 - x_1)^2 + (y_2 - y_1)^2)

A(3, 0) => (x1, y1)

R(0, -1) => (x2, y2)


AR = √((0 - 3)^2 + (-1 - 0)^2)


AR = √((-3)^2 + (-1)^2) = √(9 + 1) = √(10)


RS = √((x_2 - x_1)^2 + (y_2 - y_1)^2)

R(0, -1) => (x1, y1)

S(-1, 2) => (x2, y2)


RS = √((-1 - 0)^2 + (2 -(-1))^2)


RS = √((-1)^2 + (3)^2) = √(1 + 9) = √(10)


Perimeter = ST + TA + AR + RS


Perimeter = √(10) + √(10) + √(10) + √(10) = 4√(10)

User Yasheka
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories