Answer:
![\boxed{ \bold{ \huge{ \boxed{ \sf{x = 15 °}}}}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/iji11huxnof5fd7j8j9q8ps3ssc166gc8o.png)
Step-by-step explanation:
![\sf{x + 30 ° + 100 ° + 3x - 10 ° = 180 °}](https://img.qammunity.org/2021/formulas/mathematics/high-school/357k80qrphdjit714x5mc3tkj5q5wb12ar.png)
( Sum of angle in straight line )
Collect like terms
⇒
![\sf{4x + 30 ° + 100 ° - 10 ° = 180 °}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6gb8xcm9gy2vm56wyc7eeslt9uhzkym90l.png)
Calculate the sum or difference
⇒
![\sf{4x + 120 ° = 180 °}](https://img.qammunity.org/2021/formulas/mathematics/high-school/9fgnafpw3mpxfatx8125u9bw471n73x1an.png)
Move 120 to right hand side hand change it's sign
⇒
![\sf{4x = 180 ° - 120 °}](https://img.qammunity.org/2021/formulas/mathematics/high-school/hbtuxsje5ch17yir0okbh2aa50e14hvige.png)
Subtract 120 from 180
⇒
![\sf{4x = 60 ° }](https://img.qammunity.org/2021/formulas/mathematics/high-school/83q7837700tqfoox3rz7f79r98wdnqobjc.png)
Divide both sides of the equation by 4
⇒
![\sf{ (4x)/(4) = (60)/(4) }](https://img.qammunity.org/2021/formulas/mathematics/high-school/ltg3p57hu8gp1qkzyaha853xwmi3pvnuui.png)
Calculate
⇒
![\sf{x = 15 °}](https://img.qammunity.org/2021/formulas/mathematics/high-school/ea6u4dpxcs2c78dl7ik3ssywj840hck0v6.png)
Hope I helped!
Best regards!!