140k views
2 votes
Find the indefinite integral and check the result by differentiation. (Use C for the constant of integration.)

∫ (x + 8x) dx

User Ozborn
by
5.5k points

1 Answer

3 votes

Answer:


y = (9x^2)/(2) + c

Explanation:

Given


\int\limits^ _
(x + 8x) dx

Required

(a) Integrate

(b) Check using differentiation

To integrate, we make use of the following formula;

if


(dy)/(dx) = \int\limits^{} _{} ax^n

then


y = (ax^(n+1))/(n+1)

So;
\int\limits^ _
(x + 8x) dx becomes


y = (x^(1+1))/(1+1) + (8x^(1+1))/(1+1) + c


y = (x^(2))/(2) + (8x^(2))/(2) + c


y = (x^(2))/(2) + 4x^2 + c

Take LCM


y = (x^(2) + 8x^2)/(2) + c


y = (9x^2)/(2) + c

To check using differentiation, we make use of

if
y = ax^n, then


(dy)/(dx) = nax^(n-1)

Using this formula


y = (9x^2)/(2) + c becomes


(dy)/(dx) = 2 * (9x^(2-1))/(2)


(dy)/(dx) = 2 * (9x)/(2)


(dy)/(dx) =9x


9x = x + 8x

So;


(dy)/(dx) = x + 8x

User Majid Zareei
by
5.4k points