Answer:
1.)6.68% ; 2)84.13% ; 3)84.13% ; 4)1168 ; 5)1105
Explanation:
Given a normal distribution with:
Mean (m) = 1000
Standard deviation (sd) = 200
1) What percentage of the persons who take the test score above 1300?
X = 1300
Zscore = (x - m) / sd
Zscore = (1300 - 1000) / 200 = 300/200 = 1.5
P(z > 1.5) = 1 - p(z < 1.5) ;
From the z distribution table:
p(z < 1.5) = 0.9332 ; 1 - 0.9332 = 0.0668 = 6.68%
2) What percentage score above 800?
X = 800
Zscore = (x - m) / sd
Zscore = (800 - 1000) / 200 = - 200/200 = - 1
P(z > - 1) = 1 - p(z < - 1) ;
From the z distribution table:
p(z < - 1) = 0.1587 ; 1 - 0.1587 = 0.8413 = 84.13%
3) What percentage score below 1200?
X = 1200
Zscore = (x - m) / sd
Zscore = (1200 - 1000) / 200 = 200/200 = 1
p(z < 1)
From the z distribution table:
p(z < 1) = 0.8413 = 84.13%
Above what score do 20% of the test takers score?
P(z > Zscore) = 0.2 = P(z > Zscore) = 1 - 0.2 = 0.8
P(z < Zscore) = 0.8
0.8 is closest to a Zscore of 0.84
From the formula:
Zscore = (x - m) / sd
0.84 = (x - 1000) / 200
168 = x - 1000
x = 168 + 1000 = 1168
Above what score do 30% of the test takers score?
P(z > Zscore) = 0.3 = P(z > Zscore) = 1 - 0.3 = 0.7
P(z < Zscore) = 0.7
0.8 is closest to a Zscore of 0.525
From the formula:
Zscore = (x - m) / sd
0.525 = (x - 1000) / 200
105 = x - 1000
x = 105 + 1000 = 1105