Answer:
Explanation:
Let be
, the first and second derivatives of the function are, respectively:
![f'(x) = (\left((2)/(2\cdot x)\right)\cdot 8\cdot x-8\cdot \ln (2\cdot x) )/(64\cdot x^(2))](https://img.qammunity.org/2021/formulas/mathematics/college/7u905rz3bvovp950z61s5s2ffproak5lb6.png)
![f'(x) = (8-8\cdot \ln (2\cdot x))/(64\cdot x^(2))](https://img.qammunity.org/2021/formulas/mathematics/college/p5du031z4x088f62m8k4secqeox4x2frkw.png)
![f'(x) = (1-\ln(2\cdot x))/(8\cdot x^(2))](https://img.qammunity.org/2021/formulas/mathematics/college/emhlwfppicrunf7o9x6a6e0ipn5cpqzqtb.png)
![f''(x) = (\left(-(2)/(2\cdot x) \right)\cdot (8\cdot x^(2))-[1-\ln(2\cdot x)]\cdot (16\cdot x))/(64\cdot x^(4))](https://img.qammunity.org/2021/formulas/mathematics/college/mqaav9ftnzfelxvb6nqi4ki1d7dj1ky9b6.png)
![f''(x) = (-8\cdot x-16\cdot x+16\cdot x\cdot \ln (2\cdot x))/(64\cdot x^(4))](https://img.qammunity.org/2021/formulas/mathematics/college/3ldrcfu8haoi1gjnkq9ikkh8q1q24xxwu7.png)
![f''(x) = (-24\cdot x+16\cdot x \cdot \ln (2\cdot x))/(64\cdot x^(4))](https://img.qammunity.org/2021/formulas/mathematics/college/gvuokzvw8q3mrvnmbaeck54c7kazinlsrd.png)
![f''(x) = -(3)/(8\cdot x^(3))+(\ln (2\cdot x))/(4\cdot x^(3))](https://img.qammunity.org/2021/formulas/mathematics/college/uo9rreyo0b1hnok3v1voz7aed8sk14hcp6.png)
Now, let equalise the first derivative to zero and solve the resulting expression:
![(1-\ln(2\cdot x))/(8\cdot x^(2)) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/g2eck6l456p7jb6xwkvi1g4i0bbo75zi4a.png)
![1-\ln(2\cdot x) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/4pqszpm2mfdss10ker7iyy23cwwblr4zat.png)
![\ln(2\cdot x) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/1w42uvrijhlvwe9pn2dq3jh67tslrpdf1o.png)
![\ln 2 +\ln x = 1](https://img.qammunity.org/2021/formulas/mathematics/college/h5ou2h3lrsvv5j7ah6tynlyr8bixxn8zh3.png)
![\ln x = 1-\ln 2](https://img.qammunity.org/2021/formulas/mathematics/college/uox0bqslfrxtibcrn3geljpwy9m11hb9ql.png)
![x = e^(1-\ln 2)](https://img.qammunity.org/2021/formulas/mathematics/college/kl9mhu4wkibxs5h31h1ukvx74dvly1dfm8.png)
![x = (e)/(e^(\ln 2))](https://img.qammunity.org/2021/formulas/mathematics/college/5d2ok41y9nh12rzthmcjic747j01kd0os0.png)
![x = (e)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/xwq7cwwtzcnfp4s3yqwcqu89wyr9eigwzz.png)
![x \approx 1.359](https://img.qammunity.org/2021/formulas/mathematics/college/n2qhsjk6fvz37mmzlsop9gdp8cd1u5aznh.png)
This result is evaluated at the second derivative expression:
![f''(1.359) =-(3)/(8\cdot (1.359)^(3))+(\ln [2\cdot (1.359)])/(4\cdot (1.359)^(3))](https://img.qammunity.org/2021/formulas/mathematics/college/e9fnel6ea904vg8a25in19ri6h43dm9hn3.png)
![f''(1.359)\approx -0.050](https://img.qammunity.org/2021/formulas/mathematics/college/9si2btm38emxlhxz75xq12c3s51b5uvapc.png)
The critical value leads to a critical maximum and there are two intervals:
- Increasing
- Decreasing
The graphic of the function is presented below as attachment.