44.2k views
5 votes
Simplify the following expression: (sin x + cos x)^2

2 Answers

7 votes

Answer:


1 + 2 * \sin(x ) * \cos(x)

Explanation:


( \sin(x) + \cos(x) \: )^(2)

By expanding it , we get


{ \sin }^(2) x \: + { \cos }^(2) x \: + \: 2 * \sin(x) * \cos(x)

we know that


{ \sin}^(2) x + { \cos }^(2) x = 1

so,


{ \sin }^(2) x + { \cos}^(2) x + 2 * \sin(x) * \cos(x) = 1 + 2 * \sin(x) * \cos(x)

User Kasheena
by
4.3k points
4 votes

Answer:

1 + sin2x

Explanation:

Given

(sinx + cosx)² ← expand using FOIL

= sin²x + 2sinxcosx + cos²x

[ sin²x + cos²x = 1 and sin2x = 2sinxcosx ]

= 1 + sin2x

User ErikE
by
4.0k points