Answer:
The value of Cov (X, Y) is 25/6.
Explanation:
It is provided that:
![X\sim U(0,10)\\\\Y|X\sim U(0,x)](https://img.qammunity.org/2021/formulas/mathematics/college/cw7u2u4qi8z81vpywyn18ccxbluimkfggi.png)
The probability density functions are as follows:
![f_(X)(x)=\left \{ {{(1)/(10);\ 0<X<10} \atop {0;\ \text{otherwise}}} \right. \\\\f_(Y|X)(y|x)=\left \{ {{(1)/(x);\ 0<Y<x} \atop {0;\ \text{otherwise}}} \right.](https://img.qammunity.org/2021/formulas/mathematics/college/gfmcp9jdyrm6blipd390ponru64drxzuvp.png)
Then the value of f (x, y) will be:
![f_(X,Y)(x,y)=\left \{ {{(1)/(10x);\ 0<X<10,\ 0<Y<x} \atop {0;\ \text{Otherwise}}} \right.](https://img.qammunity.org/2021/formulas/mathematics/college/5eyv6osoitm4qi8n116s01nn59datx7dkk.png)
Then f (y) is:
![f_(Y)(y)=\int\limits^(10)_(y) {(1)/(10x)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/zc4qzghmy54x0b2z48c7v8sio8mbehhnzd.png)
![=(1)/(10)* [\log x]^(10)_(y)\\\\=(1)/(10)[\log 10-\log y]](https://img.qammunity.org/2021/formulas/mathematics/college/h6vef48w3zz4eszyh4yrbdix41td3k7twf.png)
Compute the value of E (X) as follows:
![E(X)=(b+a)/(2)=(10+0)/(2)=5](https://img.qammunity.org/2021/formulas/mathematics/college/goeeq7w418y0a8oi354j00og1s9hpk03l8.png)
Compute the value of E (Y) as follows:
![E(Y|X)=(b+a)/(2)=(x+0)/(2)=(x)/(2)\\\\\text{Then,}\\\\E(E(Y|X))=E((x)/(2))\\\\E(Y)=(1)/(2)* E(X)\\\\E(Y)=(5)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/nhgbv8db5ee5066xokunthtpftumtivsix.png)
Compute the value of E (XY) as follows:
![E(XY)=\int\limits^(10)_(0)\int\limits^(x)_(0) {xy\cdot (1)/(10x)} \, dx dy](https://img.qammunity.org/2021/formulas/mathematics/college/sb2o8bxfv11oympoo2sicit3s3c7l3g3nn.png)
![=\int\limits^(10)_(0)\int\limits^(x)_(0) {(y)/(10)} \, dx dy\\\\=(1)/(10)* \int\limits^(10)_(0){(y^(2))/(2)}|^(x)_(0) \, dx \\\\=(1)/(10)* \int\limits^(10)_(0){(x^(2))/(2)}\, dx\\\\=(1)/(10)* [(x^(3))/(6)]^(10)_(0)\\\\=(100)/(6)\\\\=(50)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/ec1i5s774pxi1qpzsaww74uzvdwi5vhfug.png)
Compute the value of Cov (X, Y) as follows:
![Cov (X, Y)=E(XY)-E(X)E(Y)](https://img.qammunity.org/2021/formulas/mathematics/college/jg24t41tcpiedow37txs9oyfpc050d5qs5.png)
![=(50)/(3)-[5*(5)/(2)]\\\\=(50)/(3)-(25)/(2)\\\\=(100-75)/(6)\\\\=(25)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/n7b0qj75byns3l2o5e0dfklpt7gowe3pn3.png)
Thus, the value of Cov (X, Y) is 25/6.