Answer: see proof below
Explanation:
Use the following Sum Identities:
cos (A + B) = cosA · cosB - sinA · sinB
sin (A + B) = sinA · cos B - cosA · sinB
Use the Unit Circle to evaluate the following:
cos 30 = √3/2 sin 30 = 1/2
cos 45 = √2/2 sin 45 = √2/2
cos 120 = -1/2 sin 120 = √3/2
cos 240 = -1/2 sin 240 = -√3/2
cos 315 = √2/2 sin 315 = -√2/2
cos 330 = √3/2 sin 330 = -1/2
Proof LHS → RHS
LHS = RHS: