Answer:
Zeroes : 1, 4 and -5.
Potential roots:
.
Explanation:
The given equation is
![x^3-21x=-20](https://img.qammunity.org/2021/formulas/mathematics/high-school/cnmlqzxyn56vwxe2p2iqls00e8pupgvtn3.png)
It can be written as
![x^3+0x^2-21x+20=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/ua3mpc8966wjzqhahhvmza1hay7eduymmv.png)
Splitting the middle terms, we get
![x^3-x^2+x^2-x-20x+20=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/267y2sk4q7m5xm54ibv3jx437ig954p1te.png)
![x^2(x-1)+x(x-1)-20(x-1)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/wwksd4hv8bzrydjb7m8dw8djmsm33qrquw.png)
![(x-1)(x^2+x-20)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/r8kcjfyn8b819rmzd07enhg5h1gtqpv5lo.png)
Splitting the middle terms, we get
![(x-1)(x^2+5x-4x-20)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/uz9qn7mpflh0yygmkpixxl7tqvt8ti0xia.png)
![(x-1)(x(x+5)-4(x+5))=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/gds8y9gf958ikohtncg51zlec4di74gt93.png)
![(x-1)(x+5)(x-4)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/8wm1ejuaa32ywlt7wp4swfbt7y4la0il9h.png)
Using zero product property, we get
![x-1=0\Rightarrow x=1](https://img.qammunity.org/2021/formulas/mathematics/high-school/u1cl09yefbh5q1e80bms4do7z98lasf1m1.png)
![x-4=0\Rightarrow x=4](https://img.qammunity.org/2021/formulas/mathematics/middle-school/6s2l6t0ioyf8gitz3r8mho79dchz990rtj.png)
![x+5=0\Rightarrow x=-5](https://img.qammunity.org/2021/formulas/mathematics/high-school/s9r7ratowbga3bzah30jwkbhg32ala80b6.png)
Therefore, the zeroes of the equation are 1, 4 and -5.
According to rational root theorem, the potential root of the polynomial are
![x=\frac{\text{Factor of constant}}{\text{Factor of leading coefficient}}](https://img.qammunity.org/2021/formulas/mathematics/high-school/wk993wocdh96bkh5qk7g5xv0o2kasdikso.png)
Constant = 20
Factors of constant ±1, ±2, ±4, ±5, ±10, ±20.
Leading coefficient= 1
Factors of leading coefficient ±1.
Therefore, the potential root of the polynomial are
.