Given :
Hypotenuse of right angle triangle = n + 7
Base = n - 1
Altitude = 2n
Using Pythagoras theorem :
→ ( n + 7 )² = (n - 1)² + (2n)²
→ n² + 14n + 49 = n² - 2n + 1 + 4n²
→ n² + 14n + 49 = 5n² - 2n + 1 = 0
→ n² + 14n + 49 - 5n² + 2n - 1 = 0
→ -4n² + 16n + 48 = 0
→ -4(n² - 4n - 12) = 0
→ n² - 6n + 2n - 12 = 0
→ n(n - 6) + 2(n - 6) = 0
→ (n - 6)(n + 2) = 0
As n ≠ Negative
So, n ≠ -2
So, n = 6
Hypotenuse = n + 7 = 6 + 7 = 13
Base = n - 1 = 6 - 1 = 5
Altitude = 2n = 2 × 6 = 12
So,
AB = 13
AC = 5
BC = 12