Answer:
x²+6x-15
Explanation:
We are given this expression:
![(3x^2+2x-8) - ( 2x^2-4x+7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/85gni1kzvnobe8i72gn8hmh9n7xudx74k3.png)
We want to simplify the expression. First, distribute the negative sign in front of the second set of parentheses. Multiply each term inside the parentheses by -1.
![(3x^2+2x-8) + (-1*2x^2) + (-1*-4x) + (-1*7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9ivlpe638m3y1i6z4kwylhebtm5h8iv1xb.png)
![(3x^2+2x-8) -2x^2+ 4x -7](https://img.qammunity.org/2021/formulas/mathematics/high-school/4zkseui43e5fzwg9qc2ukle7wp3hfn915c.png)
Next, combine like terms. The 2 terms with an x² can be combined, just like the two terms with an x, and the two terms without a variable.
![(3x^2-2x^2) + (2x+4x) + (-8-7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gs7tyiei9j8jj8524dt7u2ocqsteh2ne3d.png)
![x^2+(2x+4x)+(-8-7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qzymi0gdotpyzl9hfd0su215maigb79uyj.png)
![x^2+6x+(-8-7)](https://img.qammunity.org/2021/formulas/mathematics/high-school/vc7io8bgrm669vdsu54gexn8pwp04tav7n.png)
![x^2+6x-15](https://img.qammunity.org/2021/formulas/mathematics/high-school/m5k90v3td85k86qtn67jukwk8o59xn0kex.png)
The expression x²+6x-15 is equivalent to (3x²+2x-8)-(2x²-4x+7)