113k views
1 vote
If x = 4 tan(θ), find sec(θ) in terms of x

User Betty St
by
8.3k points

1 Answer

5 votes

Answer:


\sec \theta = \pm \frac{ \sqrt{ {x}^(2) + 16} }{4}

Explanation:


\because \: x = 4 \tan \theta \\ \therefore(x)/(4) = \tan \theta....(1) \\ \\ \because \: { \sec}^(2) \theta = 1 + { \tan}^(2) \theta \\ \therefore \: \sec \theta = \pm\sqrt{1 + { \tan}^(2) \theta } \\ \therefore \: \sec \theta = \pm\sqrt{1 + { \bigg( (x)/(4) \bigg)}^(2) } \\ \therefore \: \sec \theta = \pm\sqrt{1 + { (x^(2))/(16) } } \\ \therefore \: \sec \theta = \pm\sqrt{{ (16 + x^(2))/(16) } } \\ \therefore \: \sec \theta = \pm \frac{ \sqrt{ {x}^(2) + 16} }{4}

User Benjamin Kadish
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories