Answer:
![x=2y+6](https://img.qammunity.org/2021/formulas/mathematics/high-school/suxb6tiolnk5nyg4s2l1wwk2tuz7acyrns.png)
Explanation:
So we have the system:
![-x+2y=-6\\3x+y=8](https://img.qammunity.org/2021/formulas/mathematics/high-school/9ritidgs6x6dsg8nbjjaz2g3526e5xwzgo.png)
If we isolate the x-variable in the first equation:
![-x+2y=-6](https://img.qammunity.org/2021/formulas/mathematics/high-school/pc2ch6ozvlkr47jm8ey0koal50yzoxnm4l.png)
Subtract 2y from both sides:
![-x=-6-2y](https://img.qammunity.org/2021/formulas/mathematics/high-school/d3bm4xfwdte0xcuw44efprcf5aaviqr05b.png)
Divide both sides by -1:
![x=2y+6](https://img.qammunity.org/2021/formulas/mathematics/high-school/suxb6tiolnk5nyg4s2l1wwk2tuz7acyrns.png)
Therefore, we would substitute the above into the second equation:
![3x+y=8\\3(2y+6)+y=8](https://img.qammunity.org/2021/formulas/mathematics/high-school/gjte7zr706dx7l2i89t06asdf12jh53yfx.png)
The answer is 2y+6
Further notes:
To solve for the system, distribute:
![6y+18+y=8](https://img.qammunity.org/2021/formulas/mathematics/high-school/wu6pgv4cm4smfdtsbm8wxydeepluu50nhu.png)
Simplify:
![7y+18=8](https://img.qammunity.org/2021/formulas/mathematics/high-school/2asruglt3zmholen4kelqdlc4h32zq5dbk.png)
Subtract:
![7y=-10](https://img.qammunity.org/2021/formulas/mathematics/high-school/f2pgo22n1n4w6las74sz9evf6uobvf497j.png)
Divide:
![y=-10/7\approx-1.4286](https://img.qammunity.org/2021/formulas/mathematics/high-school/fy95yzluc82n6xewaur74f8uem5wasyu05.png)
Now, substitute this value back into the isolated equation:
![x=2(-10/7)+6\\x=-20/7+42/7\\x=22/7\approx3.1429](https://img.qammunity.org/2021/formulas/mathematics/high-school/dxfl39tzwxo7b9g6li0kym9wpnnmva1p0r.png)