Answer:
![2x^3+9x^2+16x+21](https://img.qammunity.org/2021/formulas/mathematics/college/nj7qu0aidsi496jw7rkmxo1lvwxrdjearc.png)
Explanation:
So we have the expression:
![(x+3)(2x^2+3x+7)](https://img.qammunity.org/2021/formulas/mathematics/college/7e86u5hqmgri4xp8e4lya84ujw8kdt885v.png)
Use the distribute property. Multiply each term on the right by (x+3):
![(2x^2)(x+3)+(3x)(x+3)+(7)(x+3)](https://img.qammunity.org/2021/formulas/mathematics/college/qoyoijh3tru3fuga8q31gmldycf6duvf77.png)
Distribute further:
![=(2x^3+6x^2)+(3x^2+9x)+(7x+21)](https://img.qammunity.org/2021/formulas/mathematics/college/qqg2pu7ln6uzw4icnhtjtd6batdqe1pk00.png)
Combine like terms:
![=(2x^3)+(6x^2+3x^2)+(9x+7x)+21\\=2x^3+9x^2+16x+21](https://img.qammunity.org/2021/formulas/mathematics/college/jfjtmqnw7w42psbkb6ibc24a4axb2ddoc7.png)
A polynomial in standard form has terms in descending order based on degree.
And we have that. Thus, we are done :)