39.1k views
1 vote
Let Y be a random variable. In a​ population, mu Subscript Upper Y Baseline equals 65μY=65 and sigma Subscript Upper Y Superscript 2 Baseline equals 49σ2Y=49. Use the central limit theorem to answer the following questions. ​ (Note​: any intermediate results should be rounded to four decimal​ places)

In a random sample of size n​ = 69​, find Pr(Y <68) =
In a random sample of size n​ = 124​, find Pr (68< Y <69)=
In a random sample of size n​ = 196​, find Pr (Y >66)=

User Bruno Kim
by
4.8k points

1 Answer

1 vote

Answer:

a.
\mathbf{P(\overline x < 68) = 0.9998}

b.
\mathbf{P(68 < \overline x < 69 ) =0}

c.
\mathbf{P ( \overline x > 66 ) =0.02275}

Explanation:

Given that ;

Let Y be a random variable In a​ population, where:

mean
\mu_y = 65


\sigma^2_y = 49

standard deviation σ =
√(49) = 7

The objective is to determine the following :

In a random sample of size n​ = 69​, find Pr(Y <68) =

Using the Central limit theorem


P(\overline x < 68) = \begin {pmatrix} (\overline x - \mu )/((\sigma)/(√(n))) < (68 - \mu )/((\sigma)/(√(n))) } \end {pmatrix}


P(\overline x < 68) = \begin {pmatrix}Z < (68 - 65 )/((7)/(√(69))) } \end {pmatrix}


P(\overline x < 68) = \begin {pmatrix}Z < (3 )/((7)/(8.3066)) } \end {pmatrix}


P(\overline x < 68) = (Z < 3.5599 )

From the z tables:


\mathbf{P(\overline x < 68) = 0.9998}

In a random sample of size n​ = 124​, find Pr (68< Y <69)=


P(68 < \overline x < 69 ) = P \begin {pmatrix} (68- \mu)/((\sigma)/(√(n))) < (\overline x - \mu)/((\sigma)/(√(n))) < ( 69 - \mu)/((\sigma)/(√(n))) \end {pmatrix}


P(68 < \overline x < 69 ) = P \begin {pmatrix} (68- 65)/((7)/(√(124))) < Z < ( 69 - 65)/((7)/(√(124))) \end {pmatrix}


P(68 < \overline x < 69 ) = P \begin {pmatrix} (3)/((7)/(11.1355)) < Z < ( 4)/((7)/(11.1355)) \end {pmatrix}


P(68 < \overline x < 69 ) = P \begin {pmatrix} 4.7724 < Z < 6.3631 \end {pmatrix}


P(68 < \overline x < 69 ) = P( Z < 6.3631 ) - P ( Z < 4.7724 )

From z tables


P(68 < \overline x < 69 ) = 0.9999 - 0.9999


\mathbf{P(68 < \overline x < 69 ) =0}

In a random sample of size n​ = 196​, find Pr (Y >66)=


P ( \overline x > 66 ) = P ( (\overline x -\mu )/((\sigma)/(√(n))) > (66 -\mu )/((\sigma)/(√(n))))


P ( \overline x > 66 ) = P ( Z> (66 - 65 )/((7)/(√(196))))


P ( \overline x > 66 ) = P ( Z> (1 )/((7)/(14)))


P ( \overline x > 66 ) = P ( Z> (14 )/(7))


P ( \overline x > 66 ) = P ( Z>2)


P ( \overline x > 66 ) = 1 - P ( Z<2)

from z tables


P ( \overline x > 66 ) = 1 - 0.9773


\mathbf{P ( \overline x > 66 ) =0.02275}

User Yvelisse
by
5.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.