Answer:
3.7 eV
5.92*10^-19 J
Step-by-step explanation:
Given that.
Potential difference of the metal, V = 3.7 V
Wavelength of the light, n = 235 nm
maximum kinetic energy given to the electrons is giving them the formula
K(max) = e.V(s), where
KE(max) is the maximum kinetic energy needed
V = potential difference of the metal
KE(max) = e * 3.7
KE(max) = 3.7eV
converting our answer to Joules, we have
3.7eV = 3.7eV * 1.6*10^-19 J/eV
3.7eV = 5.92*10^-19 J
Therefore, the maximum kinetic energy in both eV and Joules is 3.7eV and 5.92*10^-19 Joules respectively