Answer:
The correct answer is A. The probability of randomly selecting a daisy from Bouquet S is less than the probability of randomly selecting a daisy from bouquet T.
Explanation:
We are told that Bouquet S contains 30 flowers and 13 of those flowers are daisies. Therefore, the probability of selecting a daisy from Bouquet S can be modeled by:
13/30, which is greater than 1/3 but less than 1/2
We are also told that Bouquet T contains 13 flowers and 13 daises. From this information, we can conclude that all of the flowers in Bouquet T are daises, or the probability can be modeled by:
13/13 = 1
Therefore, because the probability of selecting a daisy from Bouquet S is 13/30 and the probability of selecting a daisy from Bouquet T is 1, we can conclude that, as option A states, the probability of selecting a daisy from Bouquet S is less than the probability of selecting a daisy from Bouquet T.
Hope this helps!