132k views
0 votes
Find the area of the shaded region ​

Find the area of the shaded region ​-example-1

1 Answer

12 votes

so hmmm let's get the area of the whole hexagon, and then get the area of the circle inside it, then subtract the area of the circle from that of the hexagon's, what's leftover is what we didn't subtract, namely the shaded part.


\textit{area of a regular polygon}\\\\ A=\cfrac{1}{4}ns^2\cot\stackrel{\stackrel{degrees}{\downarrow }}{\left( (180)/(n) \right)}~ \begin{cases} n=\textit{number of sides}\\ s=\textit{length of a side}\\[-0.5em] \hrulefill\\ n=\stackrel{hexagon}{6}\\ s=(9)/(2) \end{cases}\implies A=\cfrac{1}{4}(6)\left( \cfrac{9}{2} \right)^2 \cot\left( \cfrac{180}{6} \right)


A=\cfrac{1}{4}(6)\cfrac{9^2}{2^2} \cot(30^o)\implies A=\cfrac{243}{8}\cot(30^o)\implies A=\cfrac{243√(3)}{8} \\\\[-0.35em] ~\dotfill\\\\ \textit{area of circle}\\\\ A=\pi r^2~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=(4)/(5) \end{cases}\implies A=\pi \left( \cfrac{4}{5} \right)^2\implies A=\cfrac{16\pi }{25} \\\\[-0.35em] ~\dotfill


\stackrel{\textit{area of the hexagon}}{\cfrac{243√(3)}{8}}~~ - ~~\stackrel{\textit{area of the circle}}{\cfrac{16\pi }{25}}\implies \cfrac{6075√(3)-128\pi }{200}

User Jasper B
by
3.3k points