87.5k views
0 votes
Help me please!!!!!!​

Help me please!!!!!!​-example-1

1 Answer

1 vote

Answer: see both proofs below

Explanation:

Use Difference Identity: tan (A - B) = (tan A - tan B)/(1 + tanA · tanB)

Use Unit Circle to evaluate: tan (π/4) = 1

Use Tangent Identity: tanA = (sinA)/(cosA)

Use Half-Angle Identities:


\cos (A)/(2)=\sqrt{(1+\cos A)/(2)}\\\\\\\sin (A)/(2)=\sqrt{(1-\cos A)/(2)}

Part 1 Proof LHS → Middle

LHS:
\tan\bigg((\pi)/(4)-(A)/(2)\bigg)

Difference Identity:
(\tan ((\pi)/(4))-\tan((A)/(2)))/(1+\tan((\pi)/(4))\cdot \tan((A)/(2)))

Unit Circle:
(1-\tan((A)/(2)))/(1+ \tan((A)/(2)))


\text{Tangent Identity:}\qquad \qquad ((\cos(A)/(2)-\sin(A)/(2))/(\cos(A)/(2)))/((\cos(A)/(2)+\sin(A)/(2))/(\cos(A)/(2)))

Simplify:
(\cos(A)/(2)-\sin(A)/(2))/(\cos(A)/(2)+\sin(A)/(2))

LHS = Middle:
(\cos(A)/(2)-\sin(A)/(2))/(\cos(A)/(2)+\sin(A)/(2))=(\cos(A)/(2)-\sin(A)/(2))/(\cos(A)/(2)+\sin(A)/(2))\qquad \checkmark

Part 2 Proof Middle → RHS

Middle:
(\cos(A)/(2)-\sin(A)/(2))/(\cos(A)/(2)+\sin(A)/(2))


\text{Half-Angle Identity:}\qquad \qquad \frac{\sqrt{(1+\cos A)/(2)}-\sqrt{(1-\cos A)/(2)}}{\sqrt{(1+\cos A)/(2)}+\sqrt{(1-\cos A)/(2)}}

Simplify:
(√(1+\cos A)-√(1-\cos A))/(√(1+\cos A)+√(1-\cos A))

Rationalize Denominator:
(√(1+\cos A)-√(1-\cos A))/(√(1+\cos A)+√(1-\cos A))\bigg((√(1+\cos A)-√(1-\cos A))/(√(1+\cos A)-√(1-\cos A))\bigg)


=(1+\cos A-2√(1-\cos^2 A)+1-\cos A)/(1+\cos A-(1-\cos A))

Simplify:
(2-2√(1-\cos^2 A))/(2\cos A)


=(2-2√(sin^2 A))/(2\cos A)


= (2-2\sin A)/(2\cos A)

Factor:
(2(1-\sin A))/(2(\cos A))

Simplify:
(1-\sin A)/(\cos A)

Expand:
(1-\sin A)/(\cos A)\bigg((1+\sin A)/(1+\sin A)\bigg)


=(1-\sin^2 A)/(\cos A(1+\sin A))

Simplify:
(\cos^2 A)/(\cos A(1+\sin A))


=(\cos A)/(1+\sin A)

Middle = RHS:
(\cos A)/(1+\sin A)=(\cos A)/(1+\sin A)\qquad \checkmark

Help me please!!!!!!​-example-1
Help me please!!!!!!​-example-2
Help me please!!!!!!​-example-3
Help me please!!!!!!​-example-4
User Yaqoob
by
6.5k points