11.3k views
2 votes
Write the equilibrium constant expression for this reaction: 2H+(aq)+CO−23(aq) → H2CO3(aq)

User Adi Tiwari
by
4.8k points

1 Answer

2 votes

Answer:

Equilibrium constant expression for
\rm 2\; H^(+)\, (aq) + {CO_3}^(2-)\, (aq) \rightleftharpoons H_2CO_3\, (aq):


\displaystyle K = \frac{\left(a_{\mathrm{H_2CO_3\, (aq)}}\right)}{\left(a_{\mathrm{H^(+)}}\right)^2\, \left(a_{\mathrm{{CO_3}^(2-)\, (aq)}}\right)} \approx \frac{[\mathrm{H_2CO_3}]}{\left[\mathrm{H^(+)\, (aq)}\right]^(2) \, \left[\mathrm{CO_3}^(2-)\right]}.

Where


  • a_{\mathrm{H_2CO_3}},
    a_{\mathrm{H^(+)}}, and
    a_{\mathrm{CO_3}^(2-)} denote the activities of the three species, and

  • [\mathrm{H_2CO_3}],
    \left[\mathrm{H^(+)}\right], and
    \left[\mathrm{CO_3}^(2-)\right] denote the concentrations of the three species.

Step-by-step explanation:

Equilibrium Constant Expression

The equilibrium constant expression of a (reversible) reaction takes the form a fraction.

Multiply the activity of each product of this reaction to get the numerator.
\rm H_2CO_3\; (aq) is the only product of this reaction. Besides, its coefficient in the balanced reaction is one. Therefore, the numerator would simply be
\left(a_{\mathrm{H_2CO_3\, (aq)}}\right).

Similarly, multiply the activity of each reactant of this reaction to obtain the denominator. Note the coefficient "
2" on the product side of this reaction.
\rm 2\; H^(+)\, (aq) + {CO_3}^(2-)\, (aq) is equivalent to
\rm H^(+)\, (aq) + H^(+)\, (aq) + {CO_3}^(2-)\, (aq). The species
\rm H^(+)\, (aq) appeared twice among the reactants. Therefore, its activity should also appear twice in the denominator:


\left(a_{\mathrm{H^(+)}}\right)\cdot \left(a_{\mathrm{H^(+)}}\right)\cdot \, \left(a_{\mathrm{{CO_3}^(2-)\, (aq)}})\right = \left(a_{\mathrm{H^(+)}}\right)^2\, \left(a_{\mathrm{{CO_3}^(2-)\, (aq)}})\right.

That's where the exponent "
2" in this equilibrium constant expression came from.

Combine these two parts to obtain the equilibrium constant expression:


\displaystyle K = \frac{\left(a_{\mathrm{H_2CO_3\, (aq)}}\right)}{\left(a_{\mathrm{H^(+)}}\right)^2\, \left(a_{\mathrm{{CO_3}^(2-)\, (aq)}}\right)} \quad\begin{matrix}\leftarrow \text{from products} \\[0.5em] \leftarrow \text{from reactants}\end{matrix}.

Equilibrium Constant of Concentration

In dilute solutions, the equilibrium constant expression can be approximated with the concentrations of the aqueous "
(\rm aq)" species. Note that all the three species here are indeed aqueous. Hence, this equilibrium constant expression can be approximated as:


\displaystyle K = \frac{\left(a_{\mathrm{H_2CO_3\, (aq)}}\right)}{\left(a_{\mathrm{H^(+)}}\right)^2\, \left(a_{\mathrm{{CO_3}^(2-)\, (aq)}}\right)} \approx \frac{\left[\mathrm{H_2CO_3\, (aq)}\right]}{\left[\mathrm{H^(+)\, (aq)}\right]^2\cdot \left[\mathrm{{CO_3}^(2-)\, (aq)}\right]}.

User Yusuke
by
4.0k points