Answer:
See Explanation Section
Explanation:
Given
A base 5 numbering system: Envision
Some of the rules are as follows:
- For a base 5 system, the highest individual digit is 4: Meaning that the 1234, 343, 110 are valid digits while 1235, 78, 55 are invalid digits
- The place values of this system are in place of 5s: i.e. ......5°, 5¹, 5², 5³, 5⁴......
3 digit examples
1
Base 5: 100
Base 10: 25 (See calculation below)
![1 * 5^2 + 0 * 5^1 + 0 * 5^0 = 1 * 25 + 0 + 0 = 25](https://img.qammunity.org/2021/formulas/mathematics/high-school/b0quzza4fvz2e1783z71djtxzwwoe16noq.png)
Base 2: 11001 (See calculation below)
![25 / 2 = 12\ R\ 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/h1vzm2bg0934gndg3mx82a4p8somruqcjl.png)
![12 / 2 = 6\ R\ 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/c7ysr2zjxni2opdwkxdls1h7ampjs2kbue.png)
![6 / 2 = 3\ R\ 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/5uy8zd4jijhuetehohb0xaqnyr5l22lxkj.png)
![3 / 2 = 1\ R\ 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/msfuumooapcm88ekc96blbi1xgcrhl96xx.png)
![1 / 2 = 0\ R\ 1](https://img.qammunity.org/2021/formulas/mathematics/high-school/ropsabkx7lgxiazwz3r0h6fwln3pntgzt9.png)
Writing the remainder from bottom: 11001
Using the same steps as used in (1) above
2.
Base 5: 211
Base 10: 56
Base 2: 111000
3.
Base 5: 441
Base 10: 121
Base 2: 1111001
4.
Base 5: 230
Base 10: 65
Base 2: 1000001
5.
Base 5: 342
Base 10: 97
Base 2: 1100001
6.
Base 5: 141
Base 10: 46
Base 2: 101110