Answer:
![\huge \boxed{\sqrt[3]{x^(2) } } \\ \\ \huge \boxed{x^{(3)/(4) } }](https://img.qammunity.org/2021/formulas/mathematics/college/puswzf3xbtua9qtvx1c6ormgcbu41es9mh.png)
Explanation:
Part 1:
x^(5/6) ÷ x^(1/6)
Applying exponent rule : a^b ÷ a^c = a^(b-c)
x^(5/6-1/6)
x^(4/6)
Simplifying the exponent.
x^(2/3)
Converting to simplest radical form.
(x^2)^(1/3)
![\sqrt[3]{x^(2) }](https://img.qammunity.org/2021/formulas/mathematics/college/e9wudjd6ufpinj9avg8ub7pks81gg702az.png)
Part 2:
![√(x) * \sqrt[4]{x}](https://img.qammunity.org/2021/formulas/mathematics/college/1vb5vct1du2ormxpjc1ogzd0tw9l7ez70l.png)
Converting to exponent form.
x^(1/2) × x^(1/4)
Applying exponent rule : a^b × a^c = a^(b+c)
x^(1/2+1/4)
x^(2/4+1/4)
x^(3/4)