Explanation:
To find the distance between two points, we have to use the distance formula:
![d=\sqrt{(x_(2)-x_(1))^2+(y_(2)-y_(1))^2 }](https://img.qammunity.org/2021/formulas/mathematics/high-school/mgb0id27hk8ex0j1npb10w5btpnhmkdf2g.png)
Let's solve for line PQ first. We plug in the points into the formula and solve from there.
P: (-5, 1)
Q: (-2, -5)
![PQ=√((-2+5)^2+(-5-1)^2 )](https://img.qammunity.org/2021/formulas/mathematics/college/9kc95j90irjuu97qrfadp6bk9ij5n0c3jq.png)
![PQ=√((3)^2+(-6)^2 )](https://img.qammunity.org/2021/formulas/mathematics/college/selacrxy2w7n11paporftfjbr0bxfd0omy.png)
![PQ=√(9+36)](https://img.qammunity.org/2021/formulas/mathematics/college/m8yw5rjw5djsoamvflp5aeaw87z46rfsr5.png)
![PQ=√(45)](https://img.qammunity.org/2021/formulas/mathematics/college/l6rjx07q2b8y5cy1u2pwbs8og528b0hc3b.png)
![PQ=3√(5)](https://img.qammunity.org/2021/formulas/mathematics/college/7r6j96ioziu1jdeup71pnyy8xtwf8lche6.png)
Now, let's solve line ML.
M: (5, 3)
L: (2, -3)
![ML=√((2-5)^2+(-3-3)^2 )](https://img.qammunity.org/2021/formulas/mathematics/college/50lttqsyvg9xsmstljciguy6ct62u4ynw4.png)
![ML=√((-3)^2+(-6)^2)](https://img.qammunity.org/2021/formulas/mathematics/college/8sng9s5bz0nqwkakv7tkg71szhtj5d3lgw.png)
![ML=√(9+36)](https://img.qammunity.org/2021/formulas/mathematics/college/ksdndp0bmwyfae6jua55jttt16sq3xcec7.png)
![ML=√(45)](https://img.qammunity.org/2021/formulas/mathematics/college/38atc3ggori1ngwtlsbxp3nxc8kduicn0f.png)
![ML=3√(5)](https://img.qammunity.org/2021/formulas/mathematics/college/c47qca81pcseo4on5r28mo1w2ucfcj7fs2.png)
Answer: 3√5, 3√5, yes, they are congruent.