80.4k views
3 votes
Rationalise the denominator and find a, b​

Rationalise the denominator and find a, b​-example-1

2 Answers

5 votes

Given info:- Rationalise the denominator and find out the value of "a" and "b"

Given expression: {(5-2√6)/(5+2√6)} = a+b√3

Explanation:-

{(5-2√6)/(5+2√6)} = a+b√3

We know that Rationalising factor of a+b√c is a-b√c.

Therefore, the rationalising factor of 5+2√6 is 5-2√6.

⇛{(5-2√6)/(5+2√6)} × {(5-2√6)/(5-2√6)} = a+b√3

⇛{(5-2√6)(5-2√6)}/{(5+2√6)/(5-2√6)} = a+b√3

⇛{(5-2√6)²}/{5+2√6)(5-2√6)} = a+b√3 [(a-b)(a-b)=(a-b)²]

⇛{(5-2√6)²}/{(5)²-(2√6)²} = a+b√3 [∵(a+b)(a-b)=-b²]

⇛{(5-2√6)²}/({5*5)-(2*2√6*6)} = a+b√3

⇛{(5-2√6)²}/(25 - 4√6) = a+b√3

⇛{(5-2√6)²}/(25-24) = a+b√3

⇛{(5-2√6)²}/1 = a+b√3

⇛(5-2√6)² = a+b√3

⇛(5)²-(2√6)²+2(5)(2√6) = a+b√3

⇛(5*5) - (2*2√6*6) - 10 - 2√6 = a+b√3

⇛25 - 10 - 4√6 - 2√6 = a+b√3

⇛15 - 4√6 - 2√6 = a+b√3

⇛15 + 6√6 = a+b√3

∴ 15 + 6√6 = a+b√3

On, comparing with both RHS we notice that:

The value of a = 15 and b = 6.

Hope this helps!!

If you have any doubt, then you can ask me in the comments.

User No Name QA
by
5.1k points
6 votes

Answer:

a = 49

b = - 20√2

Explanation:

5 - 2√6 / 5 + 2√6

We can rationalise the denominator as follow:

5 - 2√6 / 5 + 2√6

Multiply the numerator and the denominator by the conjugate of

5 + 2√6. The conjugate of 5 + 2√6 is

5 - 2√6

(5 - 2√6 / 5 + 2√6) x (5 - 2√6 / 5 - 2√6)

(5 - 2√6) (5 - 2√6) /(5 + 2√6) (5 - 2√6)

Expand

(25 - 10√6 - 10√6 + 4×6) / (25 - 10√6 + 10√6 + 4×6)

25 - 20√6 + 24 / 25 - 24

25 + 24 - 20√6 / 1

49 - 20√6

Equating 49 - 20√6 with a + b√3, we can obtain the value of a and b as follow:

49 - 20√6 = a + b√3

From the above

a = 49

b√3 = - 20√6

Divide both side by √3

b = - 20√6/√3

Rationalise

b = - 20√6/√3 x √3/√3

b = - 20√(6×3)/ √3×√3

b = - 20√18 / 3

b = - 20√(9×2) / 3

b = - 20 × 3√2 / 3

b = - 20√2

User Beloblotskiy
by
5.7k points