41.6k views
14 votes
1. Express
(1)/(x(2x+3) ) Is partial factions.

2. The variables x and y satisfy the differential equation.
x(2x + 3)
(dy)/(dx ) = y and it is given that y = 1 when x = 1.
a.
find the particular solution of above differential equation, express y in term of x.
b.
Calculate the value of y when x = 9. given your answer in two decimal places.

User Lee Stott
by
8.7k points

2 Answers

1 vote

1. Let a and b be coefficients such that


\frac1{x(2x+3)} = \frac ax + \frac b{2x+3}

Combining the fractions on the right gives


\frac1{x(2x+3)} = (a(2x+3) + bx)/(x(2x+3))


\implies 1 = (2a+b)x + 3a


\implies \begin{cases}3a=1 \\ 2a+b=0\end{cases} \implies a=\frac13, b = -\frac23

so that


\frac1{x(2x+3)} = \boxed{\frac13 \left(\frac1x - \frac2{2x+3}\right)}

2. a. The given ODE is separable as


x(2x+3) \frac{dy}dx} = y \implies \frac{dy}y = (dx)/(x(2x+3))

Using the result of part (1), integrating both sides gives


\ln|y| = \frac13 \left(\ln|x| - \ln|2x+3|\right) + C

Given that y = 1 when x = 1, we find


\ln|1| = \frac13 \left(\ln|1| - \ln|5|\right) + C \implies C = \frac13\ln(5)

so the particular solution to the ODE is


\ln|y| = \frac13 \left(\ln|x| - \ln|2x+3|\right) + \frac13\ln(5)

We can solve this explicitly for y :


\ln|y| = \frac13 \left(\ln|x| - \ln|2x+3| + \ln(5)\right)


\ln|y| = \frac13 \ln\left|(5x)/(2x+3)\right|


\ln|y| = \ln\left|\sqrt[3]{(5x)/(2x+3)}\right|


\boxed{y = \sqrt[3]{(5x)/(2x+3)}}

2. b. When x = 9, we get


y = \sqrt[3]{(45)/(21)} = \sqrt[3]{\frac{15}7} \approx \boxed{1.29}

User Xyzk
by
7.4k points
4 votes

Answer:


\textsf{1.} \quad (1)/(x(2x+3)) \equiv (1)/(3x)-(2)/(3(2x+3))


\textsf{2a.} \quad y= \sqrt[3]{(5x)/(2x+3)}


\textsf{2b.} \quad 1.29

Explanation:

Question 1

A fraction with more than one linear factor in the denominator can be decomposed into partial fractions. This means writing it as a sum of two or more simpler fractions, making it easier to integrate, manipulate, or solve equations involving the original fraction.

Given fraction:


(1)/(x(2x+3))

Write out the expression as an identity:


(1)/(x(2x+3)) \equiv (A)/(x)+(B)/(2x+3)

Add the partial fractions:


(1)/(x(2x+3)) \equiv (A(2x+3)+Bx)/(x(2x+3))

Cancel the denominators from both sides of the identity, so the numerators are equal:


1 \equiv A(2x+3)+Bx

Rearrange:


1 \equiv 2Ax+3A+Bx


1 \equiv (2A+B)x+3A

Solve the unknown parameters A and B by plugging in the real roots of the denominator of the original fraction: x = 0 and x = -3/2.


\begin{aligned}x=0 \implies 1 &=(2A+B)(0)+3A\\1&=3A\\A&=(1)/(3)\end{aligned}


\begin{aligned}x=-(3)/(2) \implies 1 &=(2A+B)\left(-(3)/(2)\right)+3A\\\\A=(1)/(3) \implies 1&=\left(2\left((1)/(3)\right)+B\right)\left(-(3)/(2)\right)+3\left((1)/(3)\right)\\\\1&=-1-(3)/(2)B+1\\\\1&=-(3)/(2)B\\\\B&=-(2)/(3)\end{aligned}

Finally, replace A and B in the original identity to express the given fraction as partial fractions:


\boxed{(1)/(x(2x+3)) \equiv (1)/(3x)-(2)/(3(2x+3))}


\hrulefill

Question 2a

Given differential equation:


x(2x + 3) \frac{\text{d}y}{\text{d}x}= y

To solve the differential equation, first move all the terms containing y to the left-hand side, and all the terms containing x to the right-hand side, and split up the dy/dx:


(1)/(y)\:\text{d}y= (1)/(x(2x + 3))\:\text{d}x

Now integrate both sides:


\displaystyle \int (1)/(y)\:\text{d}y= \int (1)/(x(2x + 3))\:\text{d}x

Substitute the found partial fractions from the previous question:


\displaystyle \int (1)/(y)\:\text{d}y= \int \left((1)/(3x)-(2)/(3(2x+3))\right)\:\text{d}x

Simplify by separating the integrals and taking the constants outside:


\displaystyle \int (1)/(y)\:\text{d}y= (1)/(3)\int (1)/(x)\:\text{d}x- (2)/(3)\int(1)/(2x+3)\right)\:\text{d}x

Integrate:


\ln|y|=(1)/(3)\ln|x|-(2)/(3)\cdot (1)/(2)\ln|2x+3|+C


\ln|y|=(1)/(3)\ln|x|- (1)/(3)\ln|2x+3|+C

To find the value of C, substitute the given parameters of y = 1 when x = 1:


\ln|1|=(1)/(3)\ln|1|- (1)/(3)\ln|2(1)+3|+C


0=(1)/(3)(0)- (1)/(3)\ln5+C


C=(1)/(3)\ln5

Therefore:


\ln|y|=(1)/(3)\ln|x|- (1)/(3)\ln|2x+3|+(1)/(3)\ln5

Factor out 1/3 from the right side of the equation:


\ln|y|=(1)/(3)\left(\ln|x|-\ln|2x+3|+\ln5\right)

Use log rules to simplify the right side of the equation:


\ln|y|=(1)/(3)\left(\ln \left|(x)/(2x+3) \right|+\ln5\right)


\ln|y|=(1)/(3)\ln \left|(5x)/(2x+3) \right|


\ln|y|=\ln \sqrt[3]\left

Therefore:


y= \sqrt[3]{(5x)/(2x+3)}


\hrulefill

Question 2b

To calculate the value of y when x = 9, substitute x = 9 into the equation for y found in question 2a:


\begin{aligned}x=9 \implies y&= \sqrt[3]{(5(9))/(2(9)+3)}\\\\&= \sqrt[3]{(45)/(18+3)}\\\\&= \sqrt[3]{(45)/(21)}\\\\&= \sqrt[3]{(15 \cdot 3)/(7 \cdot 3)}\\\\&= \sqrt[3]{(15)/(7)}\\\\&= 1.28923198...\\\\&=1.29\; \sf (2\;d.p.)\end{aligned}

Therefore, the value of y when x = 9 is 1.29 to two decimal places.

User Richard Purdie
by
8.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories