Answer:
Step-by-step explanation:
Given that:
The argon atoms are excited into an excited state before emitting the 488.0 nm laser.
the energy of the first ionization energy of argon is 1520 kJ mol-1.
SInce 1 eV = 96.49 kJ/mol
Therefore, the energy of the first ionization energy of argon in eV is = ( 1520/ 96.49) eV
= 15.75 eV
To find where the energy level of the excited state lies below the vacuum energy level, let's first determine, the energy liberated by using planck expression.
![E = (hc)/(\lambda)](https://img.qammunity.org/2021/formulas/physics/college/dkczon6f38n9ku7k22kz1hsninriokdj0d.png)
![E = (6.6 * 10^(-34) * 3 * 10^8)/(488 * 10^(-9))](https://img.qammunity.org/2021/formulas/chemistry/college/s3obnbe3f5aiafjld3exijrgb35wy1e58p.png)
![E = (1.98 * 10^(-25))/(488 * 10^(-9))](https://img.qammunity.org/2021/formulas/chemistry/college/5vnnvojwrs8all0q0rzba2kijk4kiwjh9j.png)
![E = (1.98 * 10^(-25))/(488 * 10^(-9))](https://img.qammunity.org/2021/formulas/chemistry/college/5vnnvojwrs8all0q0rzba2kijk4kiwjh9j.png)
![E =4.057 * 10^(-19) \ J](https://img.qammunity.org/2021/formulas/chemistry/college/9ek9vto1y0o1n9wrac2q5j4rahs30gam9m.png)
Converting Joules (J) to eV ; we get,
![E =(4.057 * 10^(-19))/(1.6 * 10^(-19))](https://img.qammunity.org/2021/formulas/chemistry/college/pon8ax0karnymlf2yns59h1bprgy1pag18.png)
E = 2.53 eV
The energy levels of the first exited state = -13.223 eV