Answer:
![\mathbf{pZn ^(2+) =8.8569 }](https://img.qammunity.org/2021/formulas/chemistry/college/sdnpnrr6pif0dy1z73scsy5bdx5itktq7s.png)
Step-by-step explanation:
Using the approach of Henderson-HasselBalch equation, we have :
![pH = pKa[NH^+_4] + log ([NH_3])/([NH_4^+])](https://img.qammunity.org/2021/formulas/chemistry/college/tk4x7q7ka5lfvpclsgvrd18nkloe8nnqvt.png)
where;
the pKa of
= 9.26
concentration of
= 0.100 M
concentration of
= 0.176 M
∴
the pH of the buffered solution is :
![pH = 9.26 + log ([0.100])/([0.176])](https://img.qammunity.org/2021/formulas/chemistry/college/mc466ce18ms80xxyfpn2578jn02d7srfet.png)
![pH = 9.26 + log (0.5682)](https://img.qammunity.org/2021/formulas/chemistry/college/tnbda0kx35a2csnfrra06398i2js9880lb.png)
![pH = 9.26 +(-0.2455)](https://img.qammunity.org/2021/formulas/chemistry/college/4aj6fzoehya73szjimy8b64h74dv3te7nu.png)
![pH =9.02](https://img.qammunity.org/2021/formulas/chemistry/college/xkidwh6zp5y8rl5mqfqoa3aeas4mn3vhg3.png)
The Chemical equation for the reaction of
and EDTA is :
![Zn^(2+)_((aq)) + Y^(4-)_((aq)) \iff ZnY^(2-) _((aq))](https://img.qammunity.org/2021/formulas/chemistry/college/tsbbgmg0svf2gl1wvdup2qvd1ivc98a2m3.png)
Here;
denotes the fully deprotonated form of the EDTA
The formation constant
of the equation for the reaction can be represented as:
----- (1)
The logarithm of the formation constant of Zn - EDTA complex = 16.5
=
![10^(16.5)](https://img.qammunity.org/2021/formulas/chemistry/college/bhg02u4i4ip5xdu17badmhurkt3wgdh9dh.png)
=
![3.16 * 10^(16)](https://img.qammunity.org/2021/formulas/chemistry/college/jcpdt9re615ek794vp1j16p483a0x7r7kc.png)
Since the formation constant in the above equation signifies that the EDTA is present in
,
Then:
![\alpha _(Y^(4-) )= (Y^(4-))/(C_(EDTA))](https://img.qammunity.org/2021/formulas/chemistry/college/10732br4y29nb9wchc7ql37ys8o90qrmu9.png)
![{Y^(4-)}= \alpha_ {Y^(4-)} * {C_(EDTA)}](https://img.qammunity.org/2021/formulas/chemistry/college/r9k88sejg8i0smh2w2vq1lfy7ubu7yjrni.png)
From (1)
![K_f = \frac{[ZnY^(2-)]}{[Zn^(2+) ] \ \ \alpha_ {Y^(4-)} * {C_(EDTA)}}](https://img.qammunity.org/2021/formulas/chemistry/college/tc737goa0i16arcx6z6nprqh43f45fwn6o.png)
∴
![K_f' = K_f * \alpha _Y{^4-} = ([ZnY^(2-)])/([Zn^(2+) ] \ C_(EDTA) )](https://img.qammunity.org/2021/formulas/chemistry/college/k6mp4d3xcguflrhokycuk77l8lqzx1k0m7.png)
where;
= conditional formation constant
= the fraction of EDTA that exit in the form of the presences of the 4 charges .
So at equivalence point :
all the
initially in titrand is now present in
![ZnY^(2-)](https://img.qammunity.org/2021/formulas/chemistry/college/anzlrngn2ihg5se1pbbz4gqsm3m8fd9105.png)
![K_f' = K_f * \alpha _Y{^4-}](https://img.qammunity.org/2021/formulas/chemistry/college/2qn1iaizqm4v06xwew1h2fc0g5xcwcaz9j.png)
Obtaining the data for the value of
at the reference table:
=
![5.4 * 10^(-12)](https://img.qammunity.org/2021/formulas/chemistry/college/lq0zezrdxhyct0b60hyl2rnq552e6yoys7.png)
∴
![K_f' = 3.16 * 10^(16) * 5.4 * 10^(-2)](https://img.qammunity.org/2021/formulas/chemistry/college/1k2ahtup5gk1fkg2vhq8e23hjey9ucr19e.png)
![K_f' = 1.7064 * 10^(15)](https://img.qammunity.org/2021/formulas/chemistry/college/gccsyfbvovoa8po0lcjqqvcdhdp9gxuxce.png)
To calculate the moles of EDTA ,
,
; we have:
moles of EDTA = 0.0100 M × 0.025 L
moles of EDTA =
![2.5 * 10^(-4) \ mole](https://img.qammunity.org/2021/formulas/chemistry/college/af1frefel1ldbbp47vwcd05o8u5gbtgjyg.png)
moles of
= 0.00500 M × 0.050 L
moles of
=
![2.5 * 10^(-4) \ mole](https://img.qammunity.org/2021/formulas/chemistry/college/af1frefel1ldbbp47vwcd05o8u5gbtgjyg.png)
moles of
=
![(initial \ mole)/(total \ volume)](https://img.qammunity.org/2021/formulas/chemistry/college/imerb8ep00bn0kug81il50omv2dogtpivx.png)
moles of
=
![(2.5 * 10^(-4))/( 0.025 + 0.050 )](https://img.qammunity.org/2021/formulas/chemistry/college/wuvfyjcj5o5f6qmatzpagqj7g0o6gcqp2x.png)
moles of
=
![(2.5 * 10^(-4))/( 0.075 )](https://img.qammunity.org/2021/formulas/chemistry/college/r52dcqjq2wdqboclzmjc0iwkyqps778g7u.png)
moles of
= 0.0033333 M
Recall that:
![K_f' = K_f * \alpha _Y{^4-} = ([ZnY^(2-)])/([Zn^(2+) ] \ C_(EDTA) )](https://img.qammunity.org/2021/formulas/chemistry/college/k6mp4d3xcguflrhokycuk77l8lqzx1k0m7.png)
![K_f' = ([ZnY^(2-)])/([Zn^(2+) ] \ C_(EDTA) )](https://img.qammunity.org/2021/formulas/chemistry/college/hmp6ol2800mauuowkv36qtvojspj5sexmk.png)
Assume Q² is the amount of complex dissociated in
i.e
![Q^2 = Zn^(2+) + C_(EDTA)](https://img.qammunity.org/2021/formulas/chemistry/college/7a5na3syci5rexjp968u1jns90x332yubh.png)
![1.707 * 10^(15)= (0.0033333)/(Q)](https://img.qammunity.org/2021/formulas/chemistry/college/xpnsljydw57nq3l77z0pn7ryau16p0prj2.png)
![Q= (0.0033333)/(1.707 * 10^(15))](https://img.qammunity.org/2021/formulas/chemistry/college/umm4gkks7odgr15x7uqh8vremq0y0nqpri.png)
![Q^2= (0.0033333)/(1.707 * 10^(15))](https://img.qammunity.org/2021/formulas/chemistry/college/ybjdu5fxfi12gku7jnc1cnwoti6x129j9s.png)
![Q^2= 1.9527 * 10^(-18)](https://img.qammunity.org/2021/formulas/chemistry/college/nwk4evq9y194b32hr398djcxvrhi2sc412.png)
![Q= \sqrt{1.9527 * 10^(-18)}](https://img.qammunity.org/2021/formulas/chemistry/college/pi8l15fz5uqvmstnog5gso5mxs4fnrkkdq.png)
Q =
M
![[Zn^(2+)]= 1.39 * 10^(-9) \ M](https://img.qammunity.org/2021/formulas/chemistry/college/rmktacuairzv7r6oibg1yqh6zy2we1fu8h.png)
∴
![pZn ^(2+) = - log (1.39 * 10^(-9) ) \ M](https://img.qammunity.org/2021/formulas/chemistry/college/ayb95ywvzbns898g2hjqqm7degguhzd4o3.png)
![\mathbf{pZn ^(2+) =8.8569 }](https://img.qammunity.org/2021/formulas/chemistry/college/sdnpnrr6pif0dy1z73scsy5bdx5itktq7s.png)