10.6k views
5 votes
Calculate the pZn of a solution prepared by mixing 25.0 mL of 0.0100 M EDTA with 50.0 mL of 0.00500 M Zn2 . Assume that both the Zn2 and EDTA solutions are buffered with 0.100 M NH3 and 0.176 M NH4Cl.

1 Answer

3 votes

Answer:


\mathbf{pZn ^(2+) =8.8569 }

Step-by-step explanation:

Using the approach of Henderson-HasselBalch equation, we have :


pH = pKa[NH^+_4] + log ([NH_3])/([NH_4^+])

where;

the pKa of
NH^+_4 = 9.26

concentration of
NH_3 = 0.100 M

concentration of
NH_4Cl = 0.176 M

the pH of the buffered solution is :


pH = 9.26 + log ([0.100])/([0.176])


pH = 9.26 + log (0.5682)


pH = 9.26 +(-0.2455)


pH =9.02

The Chemical equation for the reaction of
Zn ^(2+) and EDTA is :


Zn^(2+)_((aq)) + Y^(4-)_((aq)) \iff ZnY^(2-) _((aq))

Here;


Y^(4-)_((aq)) denotes the fully deprotonated form of the EDTA

The formation constant
K_f of the equation for the reaction can be represented as:


K_f = ([ZnY^(2-)])/([Zn^(2+) ][Y^(4-)]) ----- (1)

The logarithm of the formation constant of Zn - EDTA complex = 16.5


K_f =
10^(16.5)


K_f =
3.16 * 10^(16)

Since the formation constant in the above equation signifies that the EDTA is present in
Y^(4-),

Then:


\alpha _(Y^(4-) )= (Y^(4-))/(C_(EDTA))


{Y^(4-)}= \alpha_ {Y^(4-)} * {C_(EDTA)}

From (1)


K_f = ([ZnY^(2-)])/([Zn^(2+) ][Y^(4-)])


K_f = \frac{[ZnY^(2-)]}{[Zn^(2+) ] \ \ \alpha_ {Y^(4-)} * {C_(EDTA)}}


K_f' = K_f * \alpha _Y{^4-} = ([ZnY^(2-)])/([Zn^(2+) ] \ C_(EDTA) )

where;


K_f' = conditional formation constant


\alpha _Y{^4-} = the fraction of EDTA that exit in the form of the presences of the 4 charges .

So at equivalence point :

all the
Zn^(2+) initially in titrand is now present in
ZnY^(2-)


K_f' = K_f * \alpha _Y{^4-}

Obtaining the data for the value of
\alpha _Y{^4-} at the reference table:


\alpha _Y{^4-} =
5.4 * 10^(-12)


K_f' = 3.16 * 10^(16) * 5.4 * 10^(-2)


K_f' = 1.7064 * 10^(15)

To calculate the moles of EDTA ,
Zn^(2+) ,
ZnY^(2-) ; we have:

moles of EDTA = 0.0100 M × 0.025 L

moles of EDTA =
2.5 * 10^(-4) \ mole

moles of
Zn^(2+) = 0.00500 M × 0.050 L

moles of
Zn^(2+) =
2.5 * 10^(-4) \ mole

moles of
ZnY^(2-) =
(initial \ mole)/(total \ volume)

moles of
ZnY^(2-) =
(2.5 * 10^(-4))/( 0.025 + 0.050 )

moles of
ZnY^(2-) =
(2.5 * 10^(-4))/( 0.075 )

moles of
ZnY^(2-) = 0.0033333 M

Recall that:


K_f' = K_f * \alpha _Y{^4-} = ([ZnY^(2-)])/([Zn^(2+) ] \ C_(EDTA) )


K_f' = ([ZnY^(2-)])/([Zn^(2+) ] \ C_(EDTA) )

Assume Q² is the amount of complex dissociated in
ZnY^(2-)


ZnY^(2-) \iff Zn^(2+) + C_(EDTA)

i.e
Q^2 = Zn^(2+) + C_(EDTA)


1.707 * 10^(15)= (0.0033333)/(Q)


Q= (0.0033333)/(1.707 * 10^(15))


Q^2= (0.0033333)/(1.707 * 10^(15))


Q^2= 1.9527 * 10^(-18)


Q= \sqrt{1.9527 * 10^(-18)}

Q =
1.397 * 10^(-9) M


[Zn^(2+)]= 1.39 * 10^(-9) \ M


pZn ^(2+) =- log [Zn^(2+)]


pZn ^(2+) = - log (1.39 * 10^(-9) ) \ M


\mathbf{pZn ^(2+) =8.8569 }

User Ezod
by
4.9k points