Answer:
The reasonable power will be "0.234 μW".
Step-by-step explanation:
The given values are:
P = 15 μW
d = 175 m
As we know,
Propagation follows inverse cube power law, then
∴
![Power \ \alpha \ (1)/(d^3)](https://img.qammunity.org/2021/formulas/computers-and-technology/college/xqt0rn7d3iuceohjof7kjfn3jl87tninky.png)
⇒
![Power=(K)/(d^3)](https://img.qammunity.org/2021/formulas/computers-and-technology/college/9kqqozl4alvj5t6evje72dozikru2evt0y.png)
On substituting the estimated values, we get
⇒
![15* 10^(-6)=(K)/((173)^3)](https://img.qammunity.org/2021/formulas/computers-and-technology/college/1oqsn1nk5uir31w6tdriwuh1gf6o9mzhpf.png)
⇒
![K=15* (175)^3* 10^(-6)](https://img.qammunity.org/2021/formulas/computers-and-technology/college/oymsdo16hr0wc1r7g4vv78b2q2huwt4vyy.png)
Now,
"P" at 0.7 km or 700 m from BS will be:
⇒
![P=(K)/(d^3)](https://img.qammunity.org/2021/formulas/computers-and-technology/college/vpog4mf62yjfdru18gh1js7zxarapx3otr.png)
⇒
![P=(15* (175)^3* 10^(-6))/((700)^3)](https://img.qammunity.org/2021/formulas/computers-and-technology/college/lkkta28c002bpngq7fx0hv01qv0kkfos4u.png)
⇒
![P=0.234 \ \mu W](https://img.qammunity.org/2021/formulas/computers-and-technology/college/fwljxih2b2xp5ork3n9zob87mp6uods8bi.png)