29.9k views
1 vote
Please solve this, will rate 5 stars and mark as STAR!​

Please solve this, will rate 5 stars and mark as STAR!​-example-1

1 Answer

2 votes

Answer:


\boxed{5 \cdot √(2) \cdot \sqrt[6]{5} }

Explanation:


\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }


\sqrt{\sqrt[3]{10} } \implies (10^(1)/(3) )^(1)/(2) =10^(1)/(6) =\sqrt[6]{10}


\therefore \sqrt{\sqrt[3]{10} }=\sqrt[6]{10}


\text{Solving }\sqrt[3]{250} \cdot \sqrt{\sqrt[3]{10} }


250=2 \cdot 5^3


\sqrt[3]{250}=\sqrt[3]{2\cdot 5^3}=5 \sqrt[3]{2}

Once


\sqrt[6]{2} \cdot \sqrt[6]{5} = \sqrt[6]{10}

We have


5 \sqrt[3]{2} \cdot \sqrt[6]{2} \cdot \sqrt[6]{5}

We can proceed considering the common base of exponentials


\sqrt[3]{2} \cdot \sqrt[6]{2} = 2^{(1)/(3)} \cdot 2^{(1)/(6) } = 2^{(3)/(6) } = 2^{(1)/(2) }=√(2)

Therefore,


5 \sqrt[3]{2} \cdot \sqrt[6]{2} \cdot \sqrt[6]{5} = 5 \cdot √(2) \cdot \sqrt[6]{5}

User Anthonycr
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories