Answer:
P(t) = I × ( 1 +g)^t
14922
2013
Explanation:
Given the following :
Growth rate (g) = 5% = 0.05
Initial population (I) = 10,100
Time (t) = t (t = 0 in year 2000)
A) population function P(t)
P(t) = I × ( 1 +g)^t
P(t) population in t years
I = inital population
g = growth rate
t = years after year 2000
B) Population Estimate in year 2008
2008 - 2000 = 8 = t
P(8) = 10,100 × ( 1 +0.05)^8
P(8) = 10,100 × (1.05)^8
P(8) = 10,100 × 1.4774554437
P(8) = 14922.299 = 14922
C.) Nearest whole year when population will reach over 18,400
18,400 = 10,100 × ( 1 +0.05)^t
18400 = 10,100(1.05)^t
1.05^t = 18400 / 10,100
1.05^t = 1.8217821
In(1.05^t) = ln(1.8217821)
(0.0487901)t = 0.5998152
t = 0.5998152 / 0.0487901
t = 12.293789
To attain a population of 18400 and over, the nearest whole year = 13 years
2000 + 13 = 2013