Answer:
The question is incomplete. The complete table is:
Score in percent (X): 80, 75, 70, 90, 95, 100, 75, 60, 75, 95
Time in minute (Y) : 45, 48, 40, 50, 40, 30, 30, 39, 38, 55
The answer is 0.55 %
Explanation:
ΣX = 815
ΣY = 425
ΣX x Y = 34565
Σ = 67925
Σ
= 18699
So, correlation coefficient, b
![$b= (n \Sigma XY- \Sigma X \Sigma Y)/(√(n \Sigma X^2-( \Sigma X)^2) * √((n \Sigma Y^2 -(\Sigma Y)^2))$](https://img.qammunity.org/2021/formulas/mathematics/college/tijx34brdbws68s3uqgtlj6qh91dy93den.png)
![$b = ((10 * 34565)-(815 * 425))/(√((10 * 67925)-(815)^2) * √((10 * 10699)-(425)^2))$](https://img.qammunity.org/2021/formulas/mathematics/college/yoe2yxn812ht070ng299i4rknukm6m1hvh.png)
![$b= -(725)/(9779 * 2702)$](https://img.qammunity.org/2021/formulas/mathematics/college/zki3baeclx31tlzlfozt00lm4y7o3pistz.png)
b = -0.0741
Correlation Determination:
![$B^2 = (-0.0741)^2$](https://img.qammunity.org/2021/formulas/mathematics/college/baorn1jblx64cfnwfeaz99wfp2x5rjeh5x.png)
= = 0.0055 = 0.55%
Therefore, 0.55 percentage of the variation in y can be explained by x variable.