1.2k views
5 votes
Please someone help me!!!!!!​

Please someone help me!!!!!!​-example-1
User Shaolin
by
8.3k points

2 Answers

4 votes

Answer:

see explanation

Explanation:

Using the identity

cos2Θ = 1 - 2sin²Θ, then

1 - 2sin²(
(\pi )/(4) -
(0)/(2) )

= cos [2(
(\pi )/(4) -
(0)/(2) )]

= sos(
(\pi )/(2) - Θ )

= cos
(\pi )/(2)cosΘ + sin

= 0 × cosΘ + 1 × sinΘ

= 0 + sinΘ

= sinΘ = right side

User Chenaren
by
8.4k points
3 votes

Answer: see proof below

Explanation:

Use the Difference Identity: sin (A + B) = sin A cos B - cos A sin B

Use the following Half-Angle Identities:


\sin\bigg((A)/(2)\bigg)=\sqrt{(1-\cos A)/(2)}\\\\\cos\bigg((A)/(2)\bigg)=\sqrt{(1+\cos A)/(2)}

Use the Pythagorean Identity: cos²A + sin²A = 1 --> sin²A = 1 - cos²A

Use the Unit Circle to evaluate:
\cos(\pi)/(4)=\sin(\pi)/(4)=(1)/(\sqrt2)

Proof LHS → RHS


\text{Given:}\qquad \qquad \qquad 1-2\sin^2\bigg((\pi)/(4)-(\theta)/(2)\bigg)\\\\\text{Difference Identity:}\quad 1-2\bigg(\sin(\pi)/(4)\cdot \cos (\theta)/(2)-\cos (\pi)/(4)\cdot \sin(\theta)/(2)\bigg)^2\\\\\text{Unit Circle:}\qquad \qquad 1-2\bigg((1)/(\sqrt2)\cos (\theta)/(2)-(1)/(\sqrt2)\sin (\theta)/(2)\bigg)^2\\\\\\\text{Half-Angle Identity:}\quad 1-2\bigg((√(1+\cos A))/(2)-(√(1-\cos A))/(2)\bigg)^2


\text{Expand Binomial:}\quad 1-2\bigg((1+\cos A)/(4)-(2√(1-\cos^2 A))/(4)+(1-\cos A)/(4)\bigg)\\\\\text{Simplify:}\qquad \qquad \quad 1-2\bigg((2-2√(1-\cos^2 A))/(4)\bigg)\\\\\text{Pythagorean Identity:}\quad 1-(1)/(2)\bigg(2-2√(\sin^2 A)\bigg)\\\\\text{Simplify:}\qquad \qquad \qquad 1-(1)/(2)(2-2\sin A)\\\\\text{Distribute:}\qquad \qquad \qquad 1-(1-\sin A)\\\\.\qquad \qquad \qquad \qquad \quad =1-1+\sin A\\\\\text{Simplify:}\qquad \qquad \qquad \sin A

RHS = LHS: sin A = sin A
\checkmark

Please someone help me!!!!!!​-example-1
Please someone help me!!!!!!​-example-2
User Testuser
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories