Greetings from Brasil...
from notable products:
A² - B² = (A + B)·(A - B)
bringing to our problem:
9 - G² = (3 + G)·(3 - G)
Factoring 24G + 8G²:
8G(3 + G)
So, we have:
{G²/[ (3 + G)·(3 - G)]} + {(14 + G)/[8G(3 + G)]}
So the least common denominator is: 3 + G
![\large{(G^2)/(9-G^2)+(14+G)/(24G+8G^2)=(G^2)/((3+G)\cdot (3-G))+(14+G)/(8G\cdot (3+G))}](https://img.qammunity.org/2021/formulas/mathematics/college/88m629usotp1g7w1eg5ny9y5x83ihpilko.png)