Answer:
![A = 297\pi](https://img.qammunity.org/2023/formulas/mathematics/college/9ktddwutjbnvn34fmeacykrwvzygra5o98.png)
Explanation:
To solve this problem we need to be familiar with the formula for the surface area of a cone:
![A = \pi r(r + √(h^2+r^2))](https://img.qammunity.org/2023/formulas/mathematics/college/os54ri2somn9gniqjv8yhh545zaufsqrj1.png)
We are given the length of a side and the diameter, to calculate the radius divide the diameter in half:
![r = (d)/(2)\\r = (18)/(2)\\r = 9 cm](https://img.qammunity.org/2023/formulas/mathematics/college/il1gldlkohdx55e7l0p3iyb03u5p6hdj03.png)
To calculate the height of the cone, we must use the Pythagorean Theorem:
![C^2 = A^2 + B^2](https://img.qammunity.org/2023/formulas/mathematics/college/ulq6u98ts4kf4oxrb043xegjeprc45pr8r.png)
We can treat the side length as the hypotenuse
, the radius as the base
, and solve for height
. Set the expression up like this:
![C^2 = A^2 + B^2\\24^2 = 9^2 + B^2\\B^2 = 24^2 - 9^2\\B = √(24^2 - 9^2)\\B = √(576 - 81)\\B = √(495)\\B \approx 22.25](https://img.qammunity.org/2023/formulas/mathematics/college/v7r26pf0jy04q2w9s1cyumdnn70tqziuv6.png)
Now we can plug into our original formula:
![A = \pi r(r + √(h^2+r^2))\\A = \pi 9(9+\sqrt{√(495)^2+9^2}\\A = \pi 9(9+√(495 + 81)\\A = \pi 9(9+√(576))\\A = \pi 9(9 + 24)\\A = \pi 9(33)\\A = 297\pi](https://img.qammunity.org/2023/formulas/mathematics/college/3qzmgixtu5ze7ygfbatrff4yu503nlc0vn.png)