Cardinal motor features of Parkinson's disease (PD) include bradykinesia, rest tremor, and rigidity, which appear in the early stages of the disease and largely depend on dopaminergic nigrostriatal denervation. Intermediate and advanced PD stages are characterized by motor fluctuations and dyskinesia, which depend on complex mechanisms secondary to severe nigrostriatal loss and to the problems related to oral levodopa absorption, and motor and nonmotor symptoms and signs that are secondary to marked dopaminergic loss and multisystem neurodegeneration with damage to nondopaminergic pathways. Nondopaminergic dysfunction results in motor problems, including posture, balance and gait disturbances, and fatigue, and nonmotor problems, encompassing depression, apathy, cognitive impairment, sleep disturbances, pain, and autonomic dysfunction. There are a number of symptomatic drugs for PD motor signs, but the pharmacological resources for nonmotor signs and symptoms are limited, and rehabilitation may contribute to their treatment. The present review will focus on classical notions and recent insights into the neuropathology, neuropharmacology, and neurophysiology of motor dysfunction of PD.