(a) Recall that
![(\mathrm d[\sin^(-1)x])/(\mathrm dx)=\frac1{√(1-x^2)}](https://img.qammunity.org/2021/formulas/mathematics/college/ksgsv0yfbvk8jnaj403o2591sd6bjjs67m.png)
![(\mathrm d[\ln x])/(\mathrm dx)=\frac1x](https://img.qammunity.org/2021/formulas/mathematics/college/f9ceecoyoo1qo4fqxurgj37w7ijq2xkbtl.png)
![(\mathrm d[\sqrt x])/(\mathrm dx)=\frac1{2\sqrt x}](https://img.qammunity.org/2021/formulas/mathematics/college/l2i23naau7rpfgqcdw9npisuyl6zvj81ph.png)
Then by the chain rule,

![\implies(\mathrm dy)/(\mathrm dx)=(\mathrm d[\sin^(-1)(\sqrt x)+\ln(\sqrt x)])/(\mathrm dx)](https://img.qammunity.org/2021/formulas/mathematics/college/uzllo7m8k2l8g0lj608foysgh37x8jsq9b.png)
![=\frac1{√(1-(\sqrt x)^2)}(\mathrm d[\sqrt x])/(\mathrm dx)+\frac1{\sqrt x}(\mathrm d[\sqrt x])/(\mathrm dx)](https://img.qammunity.org/2021/formulas/mathematics/college/kjnazym1z7ojudjo7e9clvoliy2cmmmon5.png)



(b) I'll assume
refers to the logarithm of base
. Recall that
![(\mathrm d[e^x])/(\mathrm dx)=e^x](https://img.qammunity.org/2021/formulas/mathematics/college/vpiqzi433hkr1rdi3pd5xd8bvk7ty370h2.png)
![2^x=e^(\log2\,x)\implies(\mathrm d[2^x])/(\mathrm dx)=e^(\log2\,x)(\mathrm d[\log2\,x])/(\mathrm dx)=\log2\cdot2^x](https://img.qammunity.org/2021/formulas/mathematics/college/7bdoa4jj8jmdya97qkxqfw63qefjvq80w4.png)
Then using the chain rule and implicit differentiation, we get

![\implies e^y(\mathrm dy)/(\mathrm dx)=(\mathrm d[2^x])/(\mathrm dx)\log x+2^x(\mathrm d[\log x])/(\mathrm dx)-e^(2x)(\mathrm d[2x])/(\mathrm dx)](https://img.qammunity.org/2021/formulas/mathematics/college/jzzswe7r9jxxal7llnfnoy7fuz4d3v6f8a.png)




If instead
denotes the base 10 logarithm, you need only make the following adjustment:
![\log x=(\ln x)/(\ln 10)\implies(\mathrm d[\log_(10)x])/(\mathrm dx)=\frac1{\ln10\,x}](https://img.qammunity.org/2021/formulas/mathematics/college/8objjxnooch3qxfxls4hnns1n46ohcz9xh.png)
where
is logarithm of base
.