71.6k views
0 votes
In each of the following


find \: (dy)/(dx)\:

a)\: \: y = \sin ^ - 1 √(x) + ln( √(x) )


b) {e}^(y) = {2}^(x) log(x) - {e}^(2x)


User Paul Erdos
by
7.5k points

1 Answer

2 votes

(a) Recall that


(\mathrm d[\sin^(-1)x])/(\mathrm dx)=\frac1{√(1-x^2)}


(\mathrm d[\ln x])/(\mathrm dx)=\frac1x


(\mathrm d[\sqrt x])/(\mathrm dx)=\frac1{2\sqrt x}

Then by the chain rule,


y=\sin^(-1)(\sqrt x)+\ln(\sqrt x)


\implies(\mathrm dy)/(\mathrm dx)=(\mathrm d[\sin^(-1)(\sqrt x)+\ln(\sqrt x)])/(\mathrm dx)


=\frac1{√(1-(\sqrt x)^2)}(\mathrm d[\sqrt x])/(\mathrm dx)+\frac1{\sqrt x}(\mathrm d[\sqrt x])/(\mathrm dx)


=\frac1{2\sqrt x√(1-x)}+\frac1{2(\sqrt x)^2}


=\frac1{2√(x-x^2)}+\frac1{2x}


=\boxed{(x+√(x-x^2))/(2x√(x-x^2))}

(b) I'll assume
\log x refers to the logarithm of base
e. Recall that


(\mathrm d[e^x])/(\mathrm dx)=e^x


2^x=e^(\log2\,x)\implies(\mathrm d[2^x])/(\mathrm dx)=e^(\log2\,x)(\mathrm d[\log2\,x])/(\mathrm dx)=\log2\cdot2^x

Then using the chain rule and implicit differentiation, we get


e^y=2^x\log x-e^(2x)


\implies e^y(\mathrm dy)/(\mathrm dx)=(\mathrm d[2^x])/(\mathrm dx)\log x+2^x(\mathrm d[\log x])/(\mathrm dx)-e^(2x)(\mathrm d[2x])/(\mathrm dx)


e^y(\mathrm dy)/(\mathrm dx)=\log2\cdot2^x\log x+\frac{2^x}x-2e^(2x)


(\mathrm dy)/(\mathrm dx)=\frac{\log2\cdot2^x\log x+\frac{2^x}x-2e^(2x)}{e^y}


(\mathrm dy)/(\mathrm dx)=\frac{\log2\cdot2^x\log x+\frac{2^x}x-2e^(2x)}{2^x\log x-e^(2x)}


(\mathrm dy)/(\mathrm dx)=\boxed{(\log2\cdot2^xx\log x+2^x-2xe^(2x))/(x(2^x\log x-e^(2x)))}

If instead
\log x=\log_(10)x denotes the base 10 logarithm, you need only make the following adjustment:


\log x=(\ln x)/(\ln 10)\implies(\mathrm d[\log_(10)x])/(\mathrm dx)=\frac1{\ln10\,x}

where
\ln x is logarithm of base
e.

User Sana Mumtaz
by
7.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories