Answer: (0.8115, 0.8645)
Explanation:
Let p be the proportion of people who leave one space after a period.
Given: Sample size : n= 525
Number of people responded that they leave one space. =440
i.e. sample proportion:
![\hat{p}=(440)/(525)\approx0.838](https://img.qammunity.org/2021/formulas/mathematics/high-school/x2xcyza9dutfvqwe0ovmbhl66r9ozryccx.png)
z-score for 90% confidence level : 1.645
Formula to find the confidence interval :
![\hat{p}\pm z^*\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}](https://img.qammunity.org/2021/formulas/mathematics/college/fw0u0jw15jrkxn1hsq39ejzgg79bhsdq4d.png)
![0.838\pm (1.645)\sqrt{(0.838(1-0.838))/(525)}\\\\=0.838\pm (1.645)√(0.00025858285)\\\\=0.838\pm (1.645)(0.01608)\\\\= 0.838\pm0.0265\\\\=(0.838-0.0265,\ 0.838+0.0265)\\\\=(0.8115,\ 0.8645)](https://img.qammunity.org/2021/formulas/mathematics/high-school/5nht6zlrxgwhvlypg9wnn0ix62ysoadgpd.png)
Hence, a 90% confidence interval for the proportion of people who leave one space after a period: (0.8115, 0.8645)