46.5k views
3 votes

{e}^(y) + {x}^(3) {y}^(2) + ln(x) = 1

and

(dy)/(dt) = 2
when x=1 and y=0.
Find

(dx)/(dt)
when x=1 and y=0​

1 Answer

2 votes

Differentiate both sides implicitly:


(\mathrm d)/(\mathrm dt)[e^y+x^3y^2+\ln x]=(\mathrm d[1])/(\mathrm dt)


e^y(\mathrm dy)/(\mathrm dt)+3x^2y^2(\mathrm dx)/(\mathrm dt)+2x^3y(\mathrm dy)/(\mathrm dt)+\frac1x(\mathrm dx)/(\mathrm dt)=0

Solve for
(\mathrm dx)/(\mathrm dt):


\left(3x^2y^2+\frac1x\right)(\mathrm dx)/(\mathrm dt)=-(e^y+2x^3y)(\mathrm dy)/(\mathrm dt)


(\mathrm dx)/(\mathrm dt)=-(e^y+2x^3y)/(3x^2y^2+\frac1x)(\mathrm dy)/(\mathrm dt)


(\mathrm dx)/(\mathrm dt)=-(xe^y+2x^4y)/(3x^3y^2+1)(\mathrm dy)/(\mathrm dt)

Plug in
x=1,
y=0, and
(\mathrm dy)/(\mathrm dt)=2:


(\mathrm dx)/(\mathrm dt)=\boxed{-2}

User Janbrohl
by
4.5k points