Answer:
a) Tantalum
b) 1.93 V
Step-by-step explanation:
The energy of the incident photon= hc/λ
h= Plank's constant=6.63×10^-34 Is
c= speed of light = 3×10^8 ms-1
λ= wavelength of incident photon
E= 6.63×10^-34 × 3×10^8/ 200×10^-9
E= 0.099×10^-17
E= 9.9×10^-19 J
The kinetic energy of the electron = eV
Where;
e= electronic charge = 1.6×10^-19 C
V= 1.93 V
KE= 1.6×10^-19 C × 1.93 V
KE= 3.1 ×10^-19 J
From Einstein's photoelectric equation;
KE= E -Wo
Wo= E -KE
Wo=9.9×10^-19 J - 3.1 ×10^-19 J
Wo= 6.8×10^-19 J
Wo= 6.8×10^-19 J/1.6×10^-19
Wo= 4.25 ev
The metal is Tantalum
b) the stopping potential remains 1.93 V because intensity of incident photon has no effect on the stopping potential.