Answer:
The water is flowing at the rate of 28.04 m/s.
Step-by-step explanation:
Given;
Height of sea water, z₁ = 10.5 m
gauge pressure,
= 2.95 atm
Atmospheric pressure,
= 101325 Pa
To determine the speed of the water, apply Bernoulli's equation;
![P_1 + \rho gz_1 + (1)/(2)\rho v_1^2 = P_2 + \rho gz_2 + (1)/(2)\rho v_2^2](https://img.qammunity.org/2021/formulas/physics/college/vznjn4dbmoxk13yow051u4p0a4kieodu9a.png)
where;
P₁ =
![P_(gauge \ pressure) + P_(atm \ pressure)](https://img.qammunity.org/2021/formulas/physics/college/fxou4bw259js2mgrlpgtuhjnb6e4ok7v73.png)
P₂ =
![P_(atm)](https://img.qammunity.org/2021/formulas/physics/college/8vmftrimn317v36zdmjlncamsbthz23n19.png)
v₁ = 0
z₂ = 0
Substitute in these values and the Bernoulli's equation will reduce to;
![P_1 + \rho gz_1 + (1)/(2)\rho v_1^2 = P_2 + \rho gz_2 + (1)/(2)\rho v_2^2\\\\P_1 + \rho gz_1 + (1)/(2)\rho (0)^2 = P_2 + \rho g(0) + (1)/(2)\rho v_2^2\\\\P_1 + \rho gz_1 = P_2 + (1)/(2)\rho v_2^2\\\\P_(gauge) + P_(atm) + \rho gz_1 = P_(atm) + (1)/(2)\rho v_2^2\\\\P_(gauge) + \rho gz_1 = (1)/(2)\rho v_2^2\\\\v_2^2 = (2(P_(gauge) + \rho gz_1))/(\rho) \\\\v_2 = \sqrt{ (2(P_(gauge) + \rho gz_1))/(\rho) }](https://img.qammunity.org/2021/formulas/physics/college/nrynrut9gnzfoo62oee3g7plwrd3658uiv.png)
where;
is the density of seawater = 1030 kg/m³
![v_2 = \sqrt{ (2(2.95*101325 \ + \ 1030*9.8*10.5 ))/(1030) }\\\\v_2 = 28.04 \ m/s](https://img.qammunity.org/2021/formulas/physics/college/shvhwm8kc3fc2x9rz2o6drdycgujcqms3t.png)
Therefore, the water is flowing at the rate of 28.04 m/s.